Electric Potential Problems
This section provides 100 problems to test your understanding of electric potential, including potential calculations for point charges and charge distributions, potential energy, field-potential relations, and applications in conductors and capacitors. Inspired by JEE Main, JEE Advanced, and NEET exam patterns, these problems are tailored for exam preparation, offering a mix of numerical, conceptual, and derivation-based challenges. NEET-style problems (66–100) are formatted as multiple-choice questions (MCQs) to match the exam’s objective format. Problems are organized by type to support progressive learning and build confidence in mastering electrostatics, a key topic for JEE/NEET success.
Numerical Problems
-
Calculate the electric potential at a distance $r = 0.2 , \text{m}$ from a point charge $Q = 5 , \mu\text{C}$ ($k = 9 \times 10^9 , \text{N·m}^2/\text{C}^2$).
- (a) $2.24 \times 10^5 , \text{V}$
- (b) $2.25 \times 10^5 , \text{V}$
- (c) $2.26 \times 10^5 , \text{V}$
- (d) $2.27 \times 10^5 , \text{V}$
-
Two charges $q_1 = +3 , \mu\text{C}$ at $(0, 0)$ and $q_2 = -3 , \mu\text{C}$ at $(0.4, 0)$. Calculate the electric potential at $(0.2, 0)$.
- (a) $0 , \text{V}$
- (b) $1 \times 10^5 , \text{V}$
- (c) $2 \times 10^5 , \text{V}$
- (d) $3 \times 10^5 , \text{V}$
-
Calculate the potential energy of two charges $q_1 = 4 , \mu\text{C}$ and $q_2 = -2 , \mu\text{C}$ separated by $r = 0.1 , \text{m}$.
- (a) $-0.719 , \text{J}$
- (b) $-0.720 , \text{J}$
- (c) $-0.721 , \text{J}$
- (d) $-0.722 , \text{J}$
-
A charge $q = 1 , \mu\text{C}$ moves between points with potentials $V_a = 200 , \text{V}$ and $V_b = 100 , \text{V}$. Calculate the work done by the electric field.
- (a) $9.9 \times 10^{-5} , \text{J}$
- (b) $1.00 \times 10^{-4} , \text{J}$
- (c) $1.01 \times 10^{-4} , \text{J}$
- (d) $1.02 \times 10^{-4} , \text{J}$
-
A line charge with $\lambda = 2 \times 10^{-6} , \text{C/m}$, length $L = 0.5 , \text{m}$, lies along the x-axis from $-0.25$ to $0.25$. Calculate the potential at $(0, 0.3)$ (approximate).
- (a) $2.39 \times 10^4 , \text{V}$
- (b) $2.40 \times 10^4 , \text{V}$
- (c) $2.41 \times 10^4 , \text{V}$
- (d) $2.42 \times 10^4 , \text{V}$
-
A ring of charge (radius $R = 0.1 , \text{m}$, total charge $Q = 4 , \mu\text{C}$) lies in the xy-plane. Calculate the potential on the z-axis at $z = 0.1 , \text{m}$.
- (a) $2.54 \times 10^5 , \text{V}$
- (b) $2.55 \times 10^5 , \text{V}$
- (c) $2.56 \times 10^5 , \text{V}$
- (d) $2.57 \times 10^5 , \text{V}$
-
A disk of radius $R = 0.2 , \text{m}$, surface charge density $\sigma = 3 \times 10^{-6} , \text{C/m}^2$, lies in the xy-plane. Calculate the potential on the z-axis at $z = 0.1 , \text{m}$ ($\epsilon_0 = 8.85 \times 10^{-12} , \text{C}^2/\text{N·m}^2$).
- (a) $6.27 \times 10^4 , \text{V}$
- (b) $6.28 \times 10^4 , \text{V}$
- (c) $6.29 \times 10^4 , \text{V}$
- (d) $6.30 \times 10^4 , \text{V}$
-
A spherical shell of radius $R = 0.1 , \text{m}$ has total charge $Q = 6 , \mu\text{C}$. Calculate the potential at $r = 0.05 , \text{m}$.
- (a) $5.39 \times 10^5 , \text{V}$
- (b) $5.40 \times 10^5 , \text{V}$
- (c) $5.41 \times 10^5 , \text{V}$
- (d) $5.42 \times 10^5 , \text{V}$
-
A potential varies as $V = k \frac{3 \times 10^{-6}}{r}$. Calculate the electric field at $r = 0.3 , \text{m}$.
- (a) $9.99 \times 10^4 , \text{N/C}$
- (b) $1.00 \times 10^5 , \text{N/C}$
- (c) $1.01 \times 10^5 , \text{N/C}$
- (d) $1.02 \times 10^5 , \text{N/C}$
-
A uniform field $E = 400 \hat{i} , \text{N/C}$ exists between $(0, 0)$ and $(0.2, 0)$. Calculate the potential difference $V_{(0,0)} - V_{(0.2,0)}$.
- (a) $79.9 , \text{V}$
- (b) $80.0 , \text{V}$
- (c) $80.1 , \text{V}$
- (d) $80.2 , \text{V}$
-
A spherical conductor of radius $R = 0.2 , \text{m}$ has charge $Q = 8 , \mu\text{C}$. Calculate the potential on the surface.
- (a) $3.59 \times 10^5 , \text{V}$
- (b) $3.60 \times 10^5 , \text{V}$
- (c) $3.61 \times 10^5 , \text{V}$
- (d) $3.62 \times 10^5 , \text{V}$
-
A parallel plate capacitor has area $A = 0.01 , \text{m}^2$, separation $d = 0.001 , \text{m}$, and charge $Q = 1 \times 10^{-8} , \text{C}$. Calculate the potential difference across the plates.
- (a) $112.9 , \text{V}$
- (b) $113.0 , \text{V}$
- (c) $113.1 , \text{V}$
- (d) $113.2 , \text{V}$
-
A capacitor with capacitance $C = 20 , \mu\text{F}$ is charged to $V = 50 , \text{V}$. Calculate the energy stored in the capacitor.
- (a) $2.49 \times 10^{-2} , \text{J}$
- (b) $2.50 \times 10^{-2} , \text{J}$
- (c) $2.51 \times 10^{-2} , \text{J}$
- (d) $2.52 \times 10^{-2} , \text{J}$
-
Three charges $q_1 = q_2 = q_3 = 2 , \mu\text{C}$ are at the vertices of an equilateral triangle with side $0.2 , \text{m}$. Calculate the total potential energy of the system.
- (a) $0.539 , \text{J}$
- (b) $0.540 , \text{J}$
- (c) $0.541 , \text{J}$
- (d) $0.542 , \text{J}$
-
Calculate the potential at $r = 0.5 , \text{m}$ from a point charge $Q = -7 , \mu\text{C}$.
- (a) $-1.259 \times 10^5 , \text{V}$
- (b) $-1.260 \times 10^5 , \text{V}$
- (c) $-1.261 \times 10^5 , \text{V}$
- (d) $-1.262 \times 10^5 , \text{V}$
-
Two charges $q_1 = +5 , \mu\text{C}$ at $(0.1, 0)$ and $q_2 = -5 , \mu\text{C}$ at $(-0.1, 0)$. Calculate the potential at $(0, 0.2)$.
- (a) $0 , \text{V}$
- (b) $1 \times 10^5 , \text{V}$
- (c) $2 \times 10^5 , \text{V}$
- (d) $3 \times 10^5 , \text{V}$
-
Calculate the potential energy of $q_1 = 6 , \mu\text{C}$ and $q_2 = 3 , \mu\text{C}$ separated by $r = 0.3 , \text{m}$.
- (a) $0.539 , \text{J}$
- (b) $0.540 , \text{J}$
- (c) $0.541 , \text{J}$
- (d) $0.542 , \text{J}$
-
A line charge with $\lambda = 1 \times 10^{-6} , \text{C/m}$, length $L = 0.6 , \text{m}$, lies along the x-axis. Calculate the potential at $(0, 0.1)$ (approximate).
- (a) $1.79 \times 10^4 , \text{V}$
- (b) $1.80 \times 10^4 , \text{V}$
- (c) $1.81 \times 10^4 , \text{V}$
- (d) $1.82 \times 10^4 , \text{V}$
-
A ring of charge (radius $R = 0.2 , \text{m}$, $Q = 5 , \mu\text{C}$) lies in the xy-plane. Calculate the potential at $z = 0.2 , \text{m}$.
- (a) $1.59 \times 10^5 , \text{V}$
- (b) $1.60 \times 10^5 , \text{V}$
- (c) $1.61 \times 10^5 , \text{V}$
- (d) $1.62 \times 10^5 , \text{V}$
-
A disk of radius $R = 0.1 , \text{m}$, $\sigma = 4 \times 10^{-6} , \text{C/m}^2$, lies in the xy-plane. Calculate the potential at $z = 0.05 , \text{m}$.
- (a) $8.47 \times 10^4 , \text{V}$
- (b) $8.48 \times 10^4 , \text{V}$
- (c) $8.49 \times 10^4 , \text{V}$
- (d) $8.50 \times 10^4 , \text{V}$
-
A spherical shell of radius $R = 0.3 , \text{m}$ has $Q = 10 , \mu\text{C}$. Calculate the potential at $r = 0.2 , \text{m}$.
- (a) $2.99 \times 10^5 , \text{V}$
- (b) $3.00 \times 10^5 , \text{V}$
- (c) $3.01 \times 10^5 , \text{V}$
- (d) $3.02 \times 10^5 , \text{V}$
-
A potential varies as $V = 1000 - 300x , \text{V}$. Calculate the electric field.
- (a) $299 \hat{i} , \text{N/C}$
- (b) $300 \hat{i} , \text{N/C}$
- (c) $301 \hat{i} , \text{N/C}$
- (d) $302 \hat{i} , \text{N/C}$
-
A spherical conductor of radius $R = 0.5 , \text{m}$ has $Q = 15 , \mu\text{C}$. Calculate the potential on the surface.
- (a) $2.69 \times 10^5 , \text{V}$
- (b) $2.70 \times 10^5 , \text{V}$
- (c) $2.71 \times 10^5 , \text{V}$
- (d) $2.72# Derivation Solutions
Derivation Problems
-
Derive the electric potential due to a point charge $V = k \frac{Q}{r}$.
-
Derive the potential energy of a system of two point charges $U = k \frac{q_1 q_2}{r}$.
-
Derive the work done by the electric field $W = q (V_a - V_b)$.
-
Derive the potential due to a uniform line charge at a perpendicular distance.
-
Derive the potential due to a ring of charge on its axis.
-
Derive the potential due to a uniformly charged disk on its axis.
-
Derive the potential inside and outside a spherical shell.
-
Derive the electric field from a potential $V = k \frac{Q}{r}$.
-
Derive the potential difference between two points in a uniform electric field.
-
Derive the potential on the surface of a spherical conductor.
-
Derive the potential difference across a parallel plate capacitor $V = \frac{Q d}{\epsilon_0 A}$.
-
Derive the energy stored in a capacitor $U = \frac{1}{2} C V^2$.
-
Derive the total potential energy of a system of three charges at the vertices of a triangle.
-
Derive the electric field from a potential $V = ax + by + cz$.
-
Derive the relation between equipotential surfaces and electric field lines.
NEET-style Conceptual Problems
- What is the unit of electric potential in SI units?
- (a) Volt
- (b) Joule
- (c) Newton/Coulomb
- (d) Watt
- What does a negative potential energy between two charges indicate?
- (a) Repulsive force
- (b) Attractive force
- (c) No force
- (d) Perpendicular force
- What does the principle of superposition state for electric potential?
- (a) Potentials are vectors
- (b) Potentials add as scalars
- (c) Potentials cancel out
- (d) Potentials are independent of distance
- What happens to the potential if the distance from a point charge doubles?
- (a) Doubles
- (b) Halves
- (c) Quadruples
- (d) Quarters
- What is the dimension of electric potential?
- (a) $[\text{M} \text{L}^2 \text{T}^{-3} \text{A}^{-1}]$
- (b) $[\text{M} \text{L} \text{T}^{-1}]$
- (c) $[\text{L} \text{T}^{-2}]$
- (d) $[\text{M} \text{L}^2 \text{T}^{-1}]$
- What does the electric field direction indicate relative to equipotential surfaces?
- (a) Parallel
- (b) Perpendicular
- (c) Random
- (d) No relation
- What is the role of integration in potential calculations for charge distributions?
- (a) Sums vector potentials
- (b) Sums scalar potentials
- (c) Reduces potential
- (d) Increases distance
- What happens to the potential inside a spherical shell?
- (a) Increases with radius
- (b) Decreases with radius
- (c) Constant
- (d) Zero
- Why is the potential inside a conductor constant?
- (a) Due to high charge density
- (b) Due to $E = 0$ inside
- (c) Due to field lines
- (d) Due to charge quantization
- What is the unit of capacitance in SI units?
- (a) Farad
- (b) Volt
- (c) Joule
- (d) Ohm
- What does a constant potential inside a conductor indicate?
- (a) Non-zero electric field
- (b) Zero electric field
- (c) Variable field
- (d) Infinite field
- Which type of surface is perpendicular to the electric field?
- (a) Equipotential surface
- (b) Field line surface
- (c) Charged surface
- (d) Conductor surface
- What is the direction of the potential gradient?
- (a) Along the field
- (b) Opposite to the field
- (c) Perpendicular to the field
- (d) Random
- What does a pseudo-force do in a non-inertial frame for potential calculations?
- (a) Affects perceived potential
- (b) Affects charge distribution
- (c) Creates field lines
- (d) Reduces potential
- What is the dimension of potential energy?
- (a) $[\text{M} \text{L}^2 \text{T}^{-2}]$
- (b) $[\text{M} \text{L} \text{T}^{-1}]$
- (c) $[\text{L} \text{T}^{-2}]$
- (d) $[\text{M} \text{L}^2 \text{T}^{-1}]$
- What is the role of electric potential in rocket ion propulsion?
- (a) Reduces charge
- (b) Determines ion energy for thrust
- (c) Increases distance
- (d) Decreases field
- What happens to the potential inside a conductor with a cavity containing no charge?
- (a) Varies
- (b) Constant
- (c) Zero
- (d) Infinite
- Why does the potential due to a point charge follow a $1/r$ dependence?
- (a) Due to symmetry
- (b) Due to integration of the field
- (c) Due to field lines
- (d) Due to charge quantization
- What is the significance of $\frac{Q d}{\epsilon_0 A}$?
- (a) Potential difference across a capacitor
- (b) Electric field in a capacitor
- (c) Energy stored in a capacitor
- (d) Charge on a capacitor
- What is the unit of energy stored in a capacitor?
- (a) Joule
- (b) Volt
- (c) Farad
- (d) Watt
- What does a zero potential difference between two points indicate?
- (a) No electric field
- (b) Same potential
- (c) Maximum field
- (d) No charge
- What is the physical significance of $k \int \frac{dq}{r}$?
- (a) Electric field
- (b) Potential due to a charge distribution
- (c) Potential energy
- (d) Charge density
- Why does the electric field point from higher to lower potential?
- (a) Due to $\vec{E} = -\nabla V$
- (b) Due to symmetry
- (c) Due to field lines
- (d) Due to charge quantization
- What is the dimension of capacitance?
- (a) $[\text{M}^{-1} \text{L}^{-2} \text{T}^4 \text{A}^2]$
- (b) $[\text{M} \text{L} \text{T}^{-1}]$
- (c) $[\text{L} \text{T}^{-2}]$
- (d) $[\text{M} \text{L}^2 \text{T}^{-1}]$
- How does potential analysis help in ion propulsion systems?
- (a) Increases charge
- (b) Determines energy for ion acceleration
- (c) Reduces field
- (d) Increases distance
- What is the role of distance in potential calculations?
- (a) Linear dependence
- (b) Inverse dependence
- (c) No dependence
- (d) Exponential dependence
- What does a high potential difference in a capacitor indicate?
- (a) Low energy stored
- (b) High energy stored
- (c) No energy stored
- (d) Constant energy
- What is the physical significance of $-\nabla V$?
- (a) Potential energy
- (b) Electric field
- (c) Charge density
- (d) Potential difference
- What is the dimension of $\vec{E} \cdot \vec{l}$ in potential difference calculations?
- (a) $[\text{M} \text{L}^2 \text{T}^{-3} \text{A}^{-1}]$
- (b) $[\text{M} \text{L} \text{T}^{-1}]$
- (c) $[\text{L} \text{T}^{-2}]$
- (d) $[\text{M} \text{L}^2 \text{T}^{-3} \text{A}^{-1}]$
- Why does the potential energy of like charges increase with decreasing distance?
- (a) Due to repulsive force
- (b) Due to attractive force
- (c) Due to field lines
- (d) Due to charge quantization
NEET-style Numerical Problems
- Calculate the potential at $r = 0.4 , \text{m}$ from a point charge $Q = 2 , \mu\text{C}$.
- (a) $4.49 \times 10^4 , \text{V}$
- (b) $4.50 \times 10^4 , \text{V}$
- (c) $4.51 \times 10^4 , \text{V}$
- (d) $4.52 \times 10^4 , \text{V}$
- A ring of charge (radius $R = 0.1 , \text{m}$, $Q = 3 , \mu\text{C}$) lies in the xy-plane. Calculate the potential at $z = 0.1 , \text{m}$.
- (a) $1.90 \times 10^5 , \text{V}$
- (b) $1.91 \times 10^5 , \text{V}$
- (c) $1.92 \times 10^5 , \text{V}$
- (d) $1.93 \times 10^5 , \text{V}$
- A capacitor with $C = 15 , \mu\text{F}$ is charged to $V = 60 , \text{V}$. Calculate the energy stored.
- (a) $2.69 \times 10^{-2} , \text{J}$
- (b) $2.70 \times 10^{-2} , \text{J}$
- (c) $2.71 \times 10^{-2} , \text{J}$
- (d) $2.72 \times 10^{-2} , \text{J}$
- A charge $q = 2 , \mu\text{C}$ moves between $V_a = 150 , \text{V}$ and $V_b = 50 , \text{V}$. Calculate the work done by the field.
- (a) $1.99 \times 10^{-4} , \text{J}$
- (b) $2.00 \times 10^{-4} , \text{J}$
- (c) $2.01 \times 10^{-4} , \text{J}$
- (d) $2.02 \times 10^{-4} , \text{J}$
- A spherical conductor of radius $R = 0.1 , \text{m}$ has $Q = 4 , \mu\text{C}$. Calculate the potential on the surface.
- (a) $3.59 \times 10^5 , \text{V}$
- (b) $3.60 \times 10^5 , \text{V}$
- (c) $3.61 \times 10^5 , \text{V}$
- (d) $3.62 \times 10^5 , \text{V}$