More About Matter Waves Problems

This section provides 100 problems to test your understanding of advanced matter wave concepts, including calculations of wave function probabilities, energy quantization in a box, tunneling probabilities, and uncertainty principle quantities, as well as applications like quantum tunneling in nanotechnology and quantum sensors in spacecraft systems. Inspired by JEE Main, JEE Advanced, and NEET exam patterns, these problems are tailored for exam preparation, offering a mix of numerical, conceptual, and derivation-based challenges. NEET-style problems (66–100) are formatted as multiple-choice questions (MCQs) to match the exam’s objective format. Problems are organized by type to support progressive learning and build confidence in mastering quantum mechanics, a key topic for JEE/NEET success.

Numerical Problems

  1. A particle has a normalized wave function $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right)$ for $0 \leq x \leq a$. Calculate the probability of finding the particle between $x = 0$ and $x = \frac{a}{2}$.

    • (a) 0.49
    • (b) 0.50
    • (c) 0.51
    • (d) 0.52
  2. An electron ($m = 9.11 \times 10^{-31} , \text{kg}$) is confined in a box of length $L = 1 , \text{nm}$. Calculate the energy $E_1$ for $n=1$ in eV.

    • (a) 0.375 eV
    • (b) 0.376 eV
    • (c) 0.377 eV
    • (d) 0.378 eV
  3. An electron tunnels through a barrier with $V_0 - E = 1 , \text{eV}$ and width $a = 0.5 , \text{nm}$. Calculate the tunneling probability $T$.

    • (a) 0.076
    • (b) 0.077
    • (c) 0.078
    • (d) 0.079
  4. A particle has a position uncertainty $\Delta x = 0.2 , \text{nm}$. Calculate the minimum momentum uncertainty $\Delta p$ in kg·m/s.

    • (a) 2.63 $\times 10^{-25}$
    • (b) 2.64 $\times 10^{-25}$
    • (c) 2.65 $\times 10^{-25}$
    • (d) 2.66 $\times 10^{-25}$
  5. A particle in a box has $E_1 = 0.2 , \text{eV}$ for $n=1$. Calculate $E_3$ in eV.

    • (a) 1.7 eV
    • (b) 1.8 eV
    • (c) 1.9 eV
    • (d) 2.0 eV
  6. A proton ($m = 1.67 \times 10^{-27} , \text{kg}$) tunnels through a barrier with $V_0 - E = 0.5 , \text{eV}$, $a = 0.1 , \text{nm}$. Calculate $T$.

    • (a) 0.766
    • (b) 0.767
    • (c) 0.768
    • (d) 0.769
  7. An electron in a box ($L = 0.5 , \text{nm}$). Calculate $E_2$ in eV.

    • (a) 0.599 eV
    • (b) 0.600 eV
    • (c) 0.601 eV
    • (d) 0.602 eV
  8. A particle with $\Delta p = 5 \times 10^{-20} , \text{kg·m/s}$. Calculate the minimum $\Delta x$ in meters.

    • (a) 1.05 $\times 10^{-15}$
    • (b) 1.06 $\times 10^{-15}$
    • (c) 1.07 $\times 10^{-15}$
    • (d) 1.08 $\times 10^{-15}$
  9. A wave function $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{2\pi x}{a}\right)$ for $0 \leq x \leq a$. Calculate the probability between $x = 0$ and $x = \frac{a}{4}$.

    • (a) 0.24
    • (b) 0.25
    • (c) 0.26
    • (d) 0.27
  10. A particle in a box ($L = 2 , \text{nm}$, $m = 9.11 \times 10^{-31} , \text{kg}$). Calculate $E_1$ in Joules.

    • (a) 1.50 $\times 10^{-20}$
    • (b) 1.51 $\times 10^{-20}$
    • (c) 1.52 $\times 10^{-20}$
    • (d) 1.53 $\times 10^{-20}$
  11. An electron tunnels with $V_0 - E = 0.8 , \text{eV}$, $a = 0.3 , \text{nm}$. Calculate $T$.

    • (a) 0.145
    • (b) 0.146
    • (c) 0.147
    • (d) 0.148
  12. A particle with $\Delta x = 1 \times 10^{-11} , \text{m}$, $m = 1 \times 10^{-30} , \text{kg}$. Calculate the minimum velocity uncertainty $\Delta v$ in m/s.

    • (a) 5.27 $\times 10^{6}$
    • (b) 5.28 $\times 10^{6}$
    • (c) 5.29 $\times 10^{6}$
    • (d) 5.30 $\times 10^{6}$
  13. A particle in a box with $E_2 = 0.8 , \text{eV}$. Calculate $E_1$ in eV.

    • (a) 0.19 eV
    • (b) 0.20 eV
    • (c) 0.21 eV
    • (d) 0.22 eV
  14. A wave function $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{3\pi x}{a}\right)$ for $0 \leq x \leq a$. Calculate the probability between $x = \frac{a}{3}$ and $x = \frac{2a}{3}$.

    • (a) 0.33
    • (b) 0.34
    • (c) 0.35
    • (d) 0.36
  15. A proton in a box ($L = 1 , \text{nm}$). Calculate $E_1$ in eV.

    • (a) 0.000204 eV
    • (b) 0.000205 eV
    • (c) 0.000206 eV
    • (d) 0.000207 eV
  16. An electron with $\Delta E = 2 \times 10^{-19} , \text{J}$. Calculate the minimum $\Delta t$ in seconds.

    • (a) 2.63 $\times 10^{-16}$
    • (b) 2.64 $\times 10^{-16}$
    • (c) 2.65 $\times 10^{-16}$
    • (d) 2.66 $\times 10^{-16}$
  17. An electron tunnels with $V_0 - E = 1.5 , \text{eV}$, $a = 0.2 , \text{nm}$. Calculate $T$.

    • (a) 0.168
    • (b) 0.169
    • (c) 0.170
    • (d) 0.171
  18. A wave function $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right)$ for $0 \leq x \leq a$. Calculate $\langle x \rangle$ in terms of $a$.

    • (a) $0.49a$
    • (b) $0.50a$
    • (c) $0.51a$
    • (d) $0.52a$
  19. A particle in a box ($L = 0.1 , \text{nm}$, $m = 9.11 \times 10^{-31} , \text{kg}$). Calculate $E_1$ in eV.

    • (a) 37.5 eV
    • (b) 37.6 eV
    • (c) 37.7 eV
    • (d) 37.8 eV
  20. A proton with $\Delta p = 3 \times 10^{-20} , \text{kg·m/s}$. Calculate the minimum $\Delta x$ in meters.

    • (a) 1.75 $\times 10^{-15}$
    • (b) 1.76 $\times 10^{-15}$
    • (c) 1.77 $\times 10^{-15}$
    • (d) 1.78 $\times 10^{-15}$
  21. An electron in a box ($L = 1.5 , \text{nm}$). Calculate $E_3$ in eV.

    • (a) 0.149 eV
    • (b) 0.150 eV
    • (c) 0.151 eV
    • (d) 0.152 eV
  22. A wave function $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{2\pi x}{a}\right)$ for $0 \leq x \leq a$. Calculate the probability between $x = \frac{a}{4}$ and $x = \frac{3a}{4}$.

    • (a) 0.49
    • (b) 0.50
    • (c) 0.51
    • (d) 0.52
  23. An electron tunnels with $V_0 - E = 0.5 , \text{eV}$, $a = 0.4 , \text{nm}$. Calculate $T$.

    • (a) 0.055
    • (b) 0.056
    • (c) 0.057
    • (d) 0.058
  24. A particle with $\Delta x = 0.1 , \text{nm}$, $m = 1.67 \times 10^{-27} , \text{kg}$. Calculate the minimum $\Delta v$ in m/s.

    • (a) 3.15 $\times 10^{2}$
    • (b) 3.16 $\times 10^{2}$
    • (c) 3.17 $\times 10^{2}$
    • (d) 3.18 $\times 10^{2}$
  25. A particle in a box with $E_1 = 0.05 , \text{eV}$, $n=4$. Calculate $E_4$ in eV.

    • (a) 0.79 eV
    • (b) 0.80 eV
    • (c) 0.81 eV
    • (d) 0.82 eV
  26. A wave function $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{3\pi x}{a}\right)$ for $0 \leq x \leq a$. Calculate $\langle x \rangle$ in terms of $a$.

    • (a) $0.49a$
    • (b) $0.50a$
    • (c) $0.51a$
    • (d) $0.52a$
  27. An electron with $\Delta E = 1 \times 10^{-18} , \text{J}$. Calculate the minimum $\Delta t$ in seconds.

    • (a) 5.27 $\times 10^{-17}$
    • (b) 5.28 $\times 10^{-17}$
    • (c) 5.29 $\times 10^{-17}$
    • (d) 5.30 $\times 10^{-17}$
  28. A proton in a box ($L = 0.2 , \text{nm}$). Calculate $E_1$ in eV.

    • (a) 0.00510 eV
    • (b) 0.00511 eV
    • (c) 0.00512 eV
    • (d) 0.00513 eV
  29. An electron tunnels with $V_0 - E = 2.0 , \text{eV}$, $a = 0.1 , \text{nm}$. Calculate $T$.

    • (a) 0.364
    • (b) 0.365
    • (c) 0.366
    • (d) 0.367
  30. A wave function $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right)$ for $0 \leq x \leq a$. Calculate the probability between $x = 0$ and $x = \frac{a}{4}$.

    • (a) 0.09
    • (b) 0.10
    • (c) 0.11
    • (d) 0.12
  31. A spacecraft quantum system confines an electron in a box ($L = 0.5 , \text{nm}$). Calculate $E_1$ in eV.

    • (a) 1.49 eV
    • (b) 1.50 eV
    • (c) 1.51 eV
    • (d) 1.52 eV
  32. A particle with $\Delta p = 2 \times 10^{-21} , \text{kg·m/s}$. Calculate the minimum $\Delta x$ in meters.

    • (a) 2.63 $\times 10^{-14}$
    • (b) 2.64 $\times 10^{-14}$
    • (c) 2.65 $\times 10^{-14}$
    • (d) 2.66 $\times 10^{-14}$
  33. A particle in a box ($L = 1 , \text{nm}$, $m = 1.67 \times 10^{-27} , \text{kg}$). Calculate $E_2$ in eV.

    • (a) 0.000816 eV
    • (b) 0.000817 eV
    • (c) 0.000818 eV
    • (d) 0.000819 eV
  34. A wave function $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{2\pi x}{a}\right)$ for $0 \leq x \leq a$. Calculate $\langle x \rangle$ in terms of $a$.

    • (a) $0.49a$
    • (b) $0.50a$
    • (c) $0.51a$
    • (d) $0.52a$
  35. An electron tunnels with $V_0 - E = 0.2 , \text{eV}$, $a = 0.6 , \text{nm}$. Calculate $T$.

    • (a) 0.042
    • (b) 0.043
    • (c) 0.044
    • (d) 0.045

Conceptual Problems

  1. What does the wave function $\psi(x)$ represent?

    • (a) Probability of finding a particle
    • (b) Quantum state of a particle
    • (c) Energy of a particle
    • (d) Momentum of a particle
  2. What does $|\psi(x)|^2$ represent?

    • (a) Wave function
    • (b) Probability density
    • (c) Energy density
    • (d) Momentum density
  3. What is the unit of the wave function $\psi(x)$ in one dimension?

    • (a) m
    • (b) m$^{-1/2}$
    • (c) kg·m/s
    • (d) Joule
  4. What happens to the energy levels in a particle in a box as $n$ increases?

    • (a) Decrease
    • (b) Increase as $n^2$
    • (c) Remain the same
    • (d) Become zero
  5. What does quantum tunneling allow a particle to do?

    • (a) Increase its energy
    • (b) Pass through a potential barrier
    • (c) Reflect completely
    • (d) Absorb energy
  6. What is the unit of tunneling probability $T$?

    • (a) Dimensionless
    • (b) Meter
    • (c) Joule
    • (d) kg·m/s
  7. What does a smaller $\Delta x$ in the uncertainty principle indicate?

    • (a) Smaller $\Delta p$
    • (b) Larger $\Delta p$
    • (c) No change in $\Delta p$
    • (d) Zero $\Delta p$
  8. What happens to the tunneling probability as the barrier width $a$ increases?

    • (a) Increases
    • (b) Decreases
    • (c) Remains the same
    • (d) Becomes zero
  9. What does the particle in a box model demonstrate?

    • (a) Continuous energy levels
    • (b) Quantized energy levels
    • (c) Tunneling
    • (d) Uncertainty principle
  10. What is the dimension of $E_n$ in the particle in a box?

    • (a) $[\text{M} \text{L}^2 \text{T}^{-2}]$
    • (b) $[\text{M} \text{L} \text{T}^{-1}]$
    • (c) $[\text{L} \text{T}^{-2}]$
    • (d) $[\text{M} \text{L}^2 \text{T}^{-1}]$
  11. What does the normalization condition $\int |\psi|^2 dx = 1$ ensure?

    • (a) Energy conservation
    • (b) Total probability is 1
    • (c) Momentum conservation
    • (d) Wave function is real
  12. What is the significance of $\frac{n^2 \pi^2 \hbar^2}{2 m L^2}$?

    • (a) Wave function
    • (b) Energy levels in a box
    • (c) Tunneling probability
    • (d) Uncertainty product
  13. What happens to the energy levels in a box as $L$ increases?

    • (a) Increase
    • (b) Decrease
    • (c) Remain the same
    • (d) Become zero
  14. What does the uncertainty principle apply to?

    • (a) Classical particles only
    • (b) Quantum particles only
    • (c) Both classical and quantum particles
    • (d) Photons only
  15. How does quantum tunneling assist in spacecraft nanotechnology?

    • (a) Increases energy
    • (b) Enables quantum switching in devices
    • (c) Reduces momentum
    • (d) Increases wavelength

Derivation Problems

  1. Derive the probability density $|\psi(x)|^2$ for a particle in a box with $\psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n \pi x}{L}\right)$.

  2. Derive the energy levels $E_n = \frac{n^2 \pi^2 \hbar^2}{2 m L^2}$ for a particle in a box.

  3. Derive the tunneling probability $T \approx e^{-2 \kappa a}$ for a rectangular barrier.

  4. Derive the uncertainty principle $\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$.

  5. Derive the wave function $\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n \pi x}{L}\right)$ for a particle in a box.

  6. Derive the expectation value $\langle x \rangle$ for $\psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{\pi x}{L}\right)$.

  7. Derive the probability of finding a particle in a box between $x = 0$ and $x = \frac{L}{2}$ for $n=1$.

  8. Derive the energy $E_1$ for an electron in a box of length $L$.

  9. Derive the tunneling probability $T$ for an electron with given $V_0 - E$ and $a$.

  10. Derive the minimum $\Delta p$ for a given $\Delta x$ using the uncertainty principle.

  11. Derive the number of nodes in a particle in a box wave function for a given $n$.

  12. Derive the minimum $\Delta x$ for a given $\Delta p$ using the uncertainty principle.

  13. Derive the energy difference $E_2 - E_1$ for a particle in a box.

  14. Derive the probability density for a particle in a box with $n=2$.

  15. Derive the minimum $\Delta t$ for a given $\Delta E$ using the uncertainty principle.


NEET-style Conceptual Problems

  1. What is the unit of energy $E_n$ in the particle in a box model?

    • (a) Joule
    • (b) Radian
    • (c) Hertz
    • (d) Watt
  2. What does a larger $n$ in the particle in a box indicate?

    • (a) Lower energy
    • (b) Higher energy
    • (c) No energy change
    • (d) Zero energy
  3. What is the relationship between $E_n$ and $L$ in the particle in a box?

    • (a) $E_n \propto L$
    • (b) $E_n \propto \frac{1}{L^2}$
    • (c) $E_n$ is independent of $L$
    • (d) $E_n \propto L^2$
  4. What happens to the tunneling probability if $V_0 - E$ increases?

    • (a) Increases
    • (b) Decreases
    • (c) Remains the same
    • (d) Becomes zero
  5. What is the dimension of $\Delta x \cdot \Delta p$?

    • (a) $[\text{M} \text{L}^2 \text{T}^{-1}]$
    • (b) $[\text{M} \text{L} \text{T}^{-1}]$
    • (c) $[\text{L} \text{T}^{-2}]$
    • (d) $[\text{M} \text{L}^2 \text{T}^{-2}]$
  6. What does the boundary condition $\psi(0) = 0$ in a box represent?

    • (a) Infinite potential at the walls
    • (b) Zero probability at the walls
    • (c) Maximum probability at the walls
    • (d) Energy at the walls
  7. What is the role of the uncertainty principle in electron microscopy?

    • (a) Increases energy
    • (b) Limits resolution due to position-momentum uncertainty
    • (c) Reduces momentum
    • (d) Increases wavelength
  8. What happens to the number of nodes in a particle in a box as $n$ increases?

    • (a) Decreases
    • (b) Increases
    • (c) Remains the same
    • (d) Becomes zero
  9. Why does quantum tunneling occur in quantum mechanics?

    • (a) Due to classical mechanics
    • (b) Due to the wave nature of particles
    • (c) Due to high energy
    • (d) Due to low energy
  10. What is the unit of probability density $|\psi(x)|^2$ in one dimension?

    • (a) m$^{-1}$
    • (b) m
    • (c) Joule
    • (d) kg·m/s
  11. What does a larger $\Delta E$ in the uncertainty principle indicate?

    • (a) Larger $\Delta t$
    • (b) Smaller $\Delta t$
    • (c) No change in $\Delta t$
    • (d) Zero $\Delta t$
  12. Which quantum number determines the energy in a particle in a box?

    • (a) $l$
    • (b) $n$
    • (c) $m$
    • (d) $s$
  13. What is the effect of infinite potential walls in a box?

    • (a) Continuous energy levels
    • (b) Quantized energy levels
    • (c) No energy levels
    • (d) Random energy levels
  14. What does a pseudo-force do in a non-inertial frame for quantum calculations?

    • (a) Affects perceived wave function
    • (b) Affects energy
    • (c) Creates tunneling
    • (d) Reduces momentum
  15. What is the dimension of $\frac{\hbar^2}{2 m L^2}$?

    • (a) $[\text{M} \text{L}^2 \text{T}^{-2}]$
    • (b) $[\text{M} \text{L} \text{T}^{-1}]$
    • (c) $[\text{L} \text{T}^{-2}]$
    • (d) $[\text{M} \text{L}^2 \text{T}^{-1}]$
  16. What is the role of quantum tunneling in spacecraft quantum devices?

    • (a) Increases energy
    • (b) Enables nanoscale switching
    • (c) Reduces momentum
    • (d) Increases wavelength
  17. What happens to the wave function at the boundaries of a box?

    • (a) Maximum value
    • (b) Zero value
    • (c) Constant value
    • (d) Infinite value
  18. Why does the uncertainty principle limit precision in measurements?

    • (a) Due to $\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$
    • (b) Due to classical mechanics
    • (c) Due to high energy
    • (d) Due to low energy
  19. What is the significance of $e^{-2 \kappa a}$?

    • (a) Wave function
    • (b) Energy level
    • (c) Tunneling probability
    • (d) Uncertainty product
  20. What is the unit of $\kappa$ in tunneling probability?

    • (a) m$^{-1}$
    • (b) m
    • (c) Joule
    • (d) kg·m/s
  21. What does a high tunneling probability indicate?

    • (a) High barrier width
    • (b) Low barrier width
    • (c) No barrier
    • (d) Constant barrier
  22. What is the physical significance of $\frac{\hbar}{2}$?

    • (a) Energy level
    • (b) Minimum uncertainty product
    • (c) Wave function
    • (d) Tunneling probability
  23. Why does the particle in a box have quantized energy levels?

    • (a) Due to infinite potential walls
    • (b) Due to continuous potential
    • (c) Due to tunneling
    • (d) Due to uncertainty
  24. What is the dimension of $\sin\left(\frac{n \pi x}{L}\right)$?

    • (a) Dimensionless
    • (b) $[\text{M} \text{L} \text{T}^{-1}]$
    • (c) $[\text{L} \text{T}^{-2}]$
    • (d) $[\text{M} \text{L}^2 \text{T}^{-1}]$
  25. How does the uncertainty principle affect quantum systems in spacecraft?

    • (a) Increases energy
    • (b) Limits precision in navigation sensors
    • (c) Reduces momentum
    • (d) Increases wavelength
  26. What is the role of the quantum number $n$ in a box?

    • (a) Determines the wavelength
    • (b) Determines the energy level
    • (c) Determines the momentum
    • (d) Determines the position
  27. What does a large probability density $|\psi(x)|^2$ indicate?

    • (a) Low probability of finding the particle
    • (b) High probability of finding the particle
    • (c) No probability
    • (d) Constant probability
  28. What is the physical significance of $\frac{2}{L} \sin^2\left(\frac{n \pi x}{L}\right)$?

    • (a) Energy level
    • (b) Probability density in a box
    • (c) Tunneling probability
    • (d) Uncertainty product
  29. What is the dimension of $\Delta E \cdot \Delta t$?

    • (a) $[\text{M} \text{L}^2 \text{T}^{-1}]$
    • (b) $[\text{M} \text{L} \text{T}^{-1}]$
    • (c) $[\text{L} \text{T}^{-2}]$
    • (d) $[\text{M} \text{L}^2 \text{T}^{-2}]$
  30. Why does tunneling probability depend on the particle’s mass?

    • (a) Due to $\kappa \propto \sqrt{m}$
    • (b) Due to energy levels
    • (c) Due to wave function
    • (d) Due to uncertainty

NEET-style Numerical Problems

  1. A particle has $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right)$ for $0 \leq x \leq a$. Calculate the probability between $x = \frac{a}{4}$ and $x = \frac{3a}{4}$.

    • (a) 0.817
    • (b) 0.818
    • (c) 0.819
    • (d) 0.820
  2. An electron in a box ($L = 1 , \text{nm}$). Calculate $E_1$ in eV.

    • (a) 0.375 eV
    • (b) 0.376 eV
    • (c) 0.377 eV
    • (d) 0.378 eV
  3. An electron tunnels with $V_0 - E = 1 , \text{eV}$, $a = 0.2 , \text{nm}$. Calculate $T$.

    • (a) 0.364
    • (b) 0.365
    • (c) 0.366
    • (d) 0.367
  4. A particle with $\Delta x = 0.5 , \text{nm}$. Calculate the minimum $\Delta p$ in kg·m/s.

    • (a) 1.05 $\times 10^{-25}$
    • (b) 1.06 $\times 10^{-25}$
    • (c) 1.07 $\times 10^{-25}$
    • (d) 1.08 $\times 10^{-25}$
  5. A particle in a box with $E_1 = 0.3 , \text{eV}$, $n=2$. Calculate $E_2$ in eV.
    - (a) 1.1 eV
    - (b) 1.2 eV
    - (c) 1.3 eV
    - (d) 1.4 eV

Back to Chapter

Return to More About Matter Waves Chapter