Entropy and the Second Law of Thermodynamics Problems

This section provides 100 problems to test your understanding of entropy, the second law of thermodynamics, heat engines, refrigerators, and the Carnot cycle. Inspired by JEE Main, JEE Advanced, and NEET exam patterns, these problems are tailored for exam preparation, offering a mix of numerical, conceptual, and derivation-based challenges. NEET-style problems (66–100) are formatted as multiple-choice questions (MCQs) to match the exam’s objective format. Problems are organized by type to support progressive learning and build confidence in mastering thermodynamics, a key topic for JEE/NEET success.

Numerical Problems

  1. Calculate the entropy change for 1 mole of an ideal gas expanding isothermally and reversibly at 300 K from $V_1 = 0.02 , \text{m}^3$ to $V_2 = 0.04 , \text{m}^3$ ($R = 8.314 , \text{J/mol·K}$).

    • (a) $5.76 , \text{J/K}$
    • (b) $5.77 , \text{J/K}$
    • (c) $5.78 , \text{J/K}$
    • (d) $5.79 , \text{J/K}$
  2. Calculate the entropy change for 2 moles of an ideal gas ($C_V = \frac{3}{2} R$) heated at constant volume from 300 K to 450 K ($R = 8.314 , \text{J/mol·K}$).

    • (a) $8.59 , \text{J/K}$
    • (b) $8.60 , \text{J/K}$
    • (c) $8.61 , \text{J/K}$
    • (d) $8.62 , \text{J/K}$
  3. A gas undergoes free expansion (1 mole) from $V_1 = 0.01 , \text{m}^3$ to $V_2 = 0.03 , \text{m}^3$ at 400 K. Calculate $\Delta S_{\text{total}}$ ($R = 8.314 , \text{J/mol·K}$).

    • (a) $9.13 , \text{J/K}$
    • (b) $9.14 , \text{J/K}$
    • (c) $9.15 , \text{J/K}$
    • (d) $9.16 , \text{J/K}$
  4. Heat $Q = 500 , \text{J}$ flows from a hot reservoir at 500 K to a cold reservoir at 250 K. Calculate $\Delta S_{\text{total}}$.

    • (a) $0.99 , \text{J/K}$
    • (b) $1.00 , \text{J/K}$
    • (c) $1.01 , \text{J/K}$
    • (d) $1.02 , \text{J/K}$
  5. A heat engine absorbs $Q_H = 1000 , \text{J}$ and rejects $Q_C = 600 , \text{J}$. Calculate the efficiency.

    • (a) $0.39$
    • (b) $0.40$
    • (c) $0.41$
    • (d) $0.42$
  6. A refrigerator removes $Q_C = 800 , \text{J}$ with $W = 200 , \text{J}$. Calculate the COP.

    • (a) $3.9$
    • (b) $4.0$
    • (c) $4.1$
    • (d) $4.2$
  7. A heat engine performs $W = 300 , \text{J}$ with $Q_H = 900 , \text{J}$. Calculate $Q_C$.

    • (a) $599 , \text{J}$
    • (b) $600 , \text{J}$
    • (c) $601 , \text{J}$
    • (d) $602 , \text{J}$
  8. A refrigerator transfers $Q_C = 1200 , \text{J}$ with $COP = 5$. Calculate $W$.

    • (a) $239 , \text{J}$
    • (b) $240 , \text{J}$
    • (c) $241 , \text{J}$
    • (d) $242 , \text{J}$
  9. A Carnot engine operates between $T_H = 700 , \text{K}$ and $T_C = 350 , \text{K}$. Calculate the efficiency.

    • (a) $0.49$
    • (b) $0.50$
    • (c) $0.51$
    • (d) $0.52$
  10. A Carnot refrigerator operates between $T_H = 400 , \text{K}$ and $T_C = 300 , \text{K}$. Calculate the COP.

    • (a) $2.9$
    • (b) $3.0$
    • (c) $3.1$
    • (d) $3.2$
  11. A Carnot engine with $e = 0.3$ has $T_C = 280 , \text{K}$. Calculate $T_H$.

    • (a) $399 , \text{K}$
    • (b) $400 , \text{K}$
    • (c) $401 , \text{K}$
    • (d) $402 , \text{K}$
  12. A real engine operates between $T_H = 600 , \text{K}$ and $T_C = 300 , \text{K}$ with $e = 0.35$. Calculate the Carnot efficiency for comparison.

    • (a) $0.49$
    • (b) $0.50$
    • (c) $0.51$
    • (d) $0.52$
  13. Calculate $\Delta S$ for 1 mole of an ideal gas expanding isothermally and reversibly at 500 K from $V_1 = 0.01 , \text{m}^3$ to $V_2 = 0.03 , \text{m}^3$ ($R = 8.314 , \text{J/mol·K}$).

    • (a) $9.13 , \text{J/K}$
    • (b) $9.14 , \text{J/K}$
    • (c) $9.15 , \text{J/K}$
    • (d) $9.16 , \text{J/K}$
  14. Calculate $\Delta S$ for 3 moles of an ideal gas ($C_V = \frac{5}{2} R$) heated at constant volume from 300 K to 600 K ($R = 8.314 , \text{J/mol·K}$).

    • (a) $43.11 , \text{J/K}$
    • (b) $43.12 , \text{J/K}$
    • (c) $43.13 , \text{J/K}$
    • (d) $43.14 , \text{J/K}$
  15. Heat $Q = 800 , \text{J}$ flows from a hot reservoir at 800 K to a cold reservoir at 400 K. Calculate $\Delta S_{\text{total}}$.

    • (a) $0.99 , \text{J/K}$
    • (b) $1.00 , \text{J/K}$
    • (c) $1.01 , \text{J/K}$
    • (d) $1.02 , \text{J/K}$
  16. A heat engine absorbs $Q_H = 1500 , \text{J}$ and rejects $Q_C = 900 , \text{J}$. Calculate the efficiency.

    • (a) $0.39$
    • (b) $0.40$
    • (c) $0.41$
    • (d) $0.42$
  17. A refrigerator removes $Q_C = 1000 , \text{J}$ with $W = 250 , \text{J}$. Calculate the COP.

    • (a) $3.9$
    • (b) $4.0$
    • (c) $4.1$
    • (d) $4.2$
  18. A Carnot engine operates between $T_H = 500 , \text{K}$ and $T_C = 200 , \text{K}$. Calculate the efficiency.

    • (a) $0.59$
    • (b) $0.60$
    • (c) $0.61$
    • (d) $0.62$
  19. A Carnot refrigerator operates between $T_H = 350 , \text{K}$ and $T_C = 250 , \text{K}$. Calculate the COP.

    • (a) $2.4$
    • (b) $2.5$
    • (c) $2.6$
    • (d) $2.7$
  20. A gas undergoes free expansion (2 moles) from $V_1 = 0.02 , \text{m}^3$ to $V_2 = 0.04 , \text{m}^3$ at 300 K. Calculate $\Delta S_{\text{system}}$ ($R = 8.314 , \text{J/mol·K}$).

    • (a) $11.51 , \text{J/K}$
    • (b) $11.52 , \text{J/K}$
    • (c) $11.53 , \text{J/K}$
    • (d) $11.54 , \text{J/K}$
  21. A heat engine performs $W = 500 , \text{J}$ with $Q_H = 2000 , \text{J}$. Calculate $Q_C$.

    • (a) $1499 , \text{J}$
    • (b) $1500 , \text{J}$
    • (c) $1501 , \text{J}$
    • (d) $1502 , \text{J}$
  22. A refrigerator transfers $Q_C = 1500 , \text{J}$ with $COP = 3$. Calculate $W$.

    • (a) $499 , \text{J}$
    • (b) $500 , \text{J}$
    • (c) $501 , \text{J}$
    • (d) $502 , \text{J}$
  23. A Carnot engine with $e = 0.25$ has $T_C = 300 , \text{K}$. Calculate $T_H$.

    • (a) $399 , \text{K}$
    • (b) $400 , \text{K}$
    • (c) $401 , \text{K}$
    • (d) $402 , \text{K}$
  24. A real engine operates between $T_H = 1000 , \text{K}$ and $T_C = 400 , \text{K}$ with $e = 0.5$. Calculate the Carnot efficiency for comparison.

    • (a) $0.59$
    • (b) $0.60$
    • (c) $0.61$
    • (d) $0.62$
  25. Calculate $\Delta S$ for 1 mole of an ideal gas expanding isothermally and reversibly at 400 K from $V_1 = 0.015 , \text{m}^3$ to $V_2 = 0.045 , \text{m}^3$ ($R = 8.314 , \text{J/mol·K}$).

    • (a) $9.13 , \text{J/K}$
    • (b) $9.14 , \text{J/K}$
    • (c) $9.15 , \text{J/K}$
    • (d) $9.16 , \text{J/K}$
  26. Calculate $\Delta S$ for 1 mole of an ideal gas ($C_V = \frac{3}{2} R$) heated at constant volume from 200 K to 400 K ($R = 8.314 , \text{J/mol·K}$).

    • (a) $8.64 , \text{J/K}$
    • (b) $8.65 , \text{J/K}$
    • (c) $8.66 , \text{J/K}$
    • (d) $8.67 , \text{J/K}$
  27. Heat $Q = 1000 , \text{J}$ flows from a hot reservoir at 600 K to a cold reservoir at 300 K. Calculate $\Delta S_{\text{hot}}$.

    • (a) $-1.66 , \text{J/K}$
    • (b) $-1.67 , \text{J/K}$
    • (c) $-1.68 , \text{J/K}$
    • (d) $-1.69 , \text{J/K}$
  28. A heat engine absorbs $Q_H = 2000 , \text{J}$ and rejects $Q_C = 1400 , \text{J}$. Calculate the efficiency.

    • (a) $0.29$
    • (b) $0.30$
    • (c) $0.31$
    • (d) $0.32$
  29. A refrigerator removes $Q_C = 500 , \text{J}$ with $W = 100 , \text{J}$. Calculate the COP.

    • (a) $4.9$
    • (b) $5.0$
    • (c) $5.1$
    • (d) $5.2$
  30. A Carnot engine operates between $T_H = 800 , \text{K}$ and $T_C = 200 , \text{K}$. Calculate the efficiency.

    • (a) $0.74$
    • (b) $0.75$
    • (c) $0.76$
    • (d) $0.77$
  31. A rocket engine operates as a Carnot cycle between $T_H = 2500 , \text{K}$ (combustion) and $T_C = 500 , \text{K}$ (exhaust). Calculate the efficiency.

    • (a) $0.79$
    • (b) $0.80$
    • (c) $0.81$
    • (d) $0.82$
  32. Calculate $\Delta S$ for 2 moles of an ideal gas ($C_V = \frac{5}{2} R$) heated at constant volume from 400 K to 800 K ($R = 8.314 , \text{J/mol·K}$).

    • (a) $28.74 , \text{J/K}$
    • (b) $28.75 , \text{J/K}$
    • (c) $28.76 , \text{J/K}$
    • (d) $28.77 , \text{J/K}$
  33. A heat engine performs $W = 400 , \text{J}$ with $Q_H = 1600 , \text{J}$. Calculate $Q_C$.

    • (a) $1199 , \text{J}$
    • (b) $1200 , \text{J}$
    • (c) $1201 , \text{J}$
    • (d) $1202 , \text{J}$
  34. A Carnot refrigerator operates between $T_H = 500 , \text{K}$ and $T_C = 400 , \text{K}$. Calculate the COP.

    • (a) $3.9$
    • (b) $4.0$
    • (c) $4.1$
    • (d) $4.2$
  35. A Carnot engine with $e = 0.2$ has $T_H = 500 , \text{K}$. Calculate $T_C$.

    • (a) $399 , \text{K}$
    • (b) $400 , \text{K}$
    • (c) $401 , \text{K}$
    • (d) $402 , \text{K}$

Conceptual Problems

  1. What does the Kelvin-Planck statement of the second law imply?
  • (a) Heat can flow from cold to hot spontaneously
  • (b) No heat engine can be 100% efficient
  • (c) Entropy decreases in natural processes
  • (d) Work cannot be converted to heat
  1. What does the Clausius statement of the second law imply?
  • (a) Heat engines can be 100% efficient
  • (b) Heat cannot flow from cold to hot without work
  • (c) Entropy remains constant in all processes
  • (d) Work cannot be done in a cycle
  1. What is entropy a measure of?
  • (a) Temperature
  • (b) Disorder of a system
  • (c) Pressure
  • (d) Volume
  1. What happens to total entropy in a reversible process?
  • (a) Increases
  • (b) Decreases
  • (c) Remains constant
  • (d) Becomes zero
  1. What is the unit of entropy in SI units?
  • (a) $\text{J/K}$
  • (b) $\text{J/mol·K}$
  • (c) $\text{m/s}$
  • (d) $\text{Pa}$
  1. What does a positive $\Delta S_{\text{total}}$ indicate?
  • (a) Reversible process
  • (b) Irreversible process
  • (c) No change in entropy
  • (d) Decrease in disorder
  1. What does the efficiency of a heat engine represent?
  • (a) Ratio of heat absorbed to work done
  • (b) Ratio of work done to heat absorbed
  • (c) Ratio of heat rejected to heat absorbed
  • (d) Ratio of work done to heat rejected
  1. What is the physical significance of $\frac{Q_C}{W}$ in a refrigerator?
  • (a) Efficiency
  • (b) Coefficient of Performance
  • (c) Entropy change
  • (d) Work done
  1. What does the Carnot cycle represent?
  • (a) Most efficient cycle possible
  • (b) Least efficient cycle
  • (c) Irreversible cycle
  • (d) Isothermal cycle only
  1. What is the dimension of entropy?
  • (a) $[\text{M} \text{L}^2 \text{T}^{-2} \text{K}^{-1}]$
  • (b) $[\text{M} \text{L} \text{T}^{-1}]$
  • (c) $[\text{L} \text{T}^{-2}]$
  • (d) $[\text{M} \text{L}^2 \text{T}^{-1}]$
  1. What does a zero $\Delta S_{\text{total}}$ indicate?
  • (a) Irreversible process
  • (b) Reversible process
  • (c) No heat transfer
  • (d) No work done
  1. What is the significance of $1 - \frac{T_C}{T_H}$?
  • (a) Entropy change
  • (b) Carnot efficiency
  • (c) Work done
  • (d) Heat absorbed
  1. What happens to efficiency if $T_C$ decreases in a Carnot engine?
  • (a) Decreases
  • (b) Increases
  • (c) Remains the same
  • (d) Becomes zero
  1. What does a high COP in a refrigerator indicate?
  • (a) Low efficiency
  • (b) High efficiency in heat removal
  • (c) High work input
  • (d) Low heat transfer
  1. How does the second law apply to rocket engines?
  • (a) Increases entropy via irreversible combustion
  • (b) Decreases efficiency
  • (c) Increases temperature
  • (d) Reduces work output

Derivation Problems

  1. Derive the equivalence of the Kelvin-Planck and Clausius statements of the second law.

  2. Derive the entropy change for a reversible isothermal process $\Delta S = \frac{Q_{\text{rev}}}{T}$.

  3. Derive the entropy change for a constant volume process $\Delta S = n C_V \ln \left( \frac{T_2}{T_1} \right)$.

  4. Derive the entropy change in an irreversible free expansion.

  5. Derive the efficiency of a heat engine $e = 1 - \frac{Q_C}{Q_H}$.

  6. Derive the coefficient of performance for a refrigerator $COP = \frac{Q_C}{W}$.

  7. Derive the Carnot efficiency $e_{\text{Carnot}} = 1 - \frac{T_C}{T_H}$.

  8. Derive the Carnot refrigerator COP $COP_{\text{Carnot}} = \frac{T_C}{T_H - T_C}$.

  9. Derive the work done in the Carnot cycle $W = n R (T_H - T_C) \ln \left( \frac{V_2}{V_1} \right)$.

  10. Derive the entropy change for heat transfer between two reservoirs.

  11. Derive the second law in terms of entropy $\Delta S_{\text{total}} \geq 0$.

  12. Derive the relation $\frac{Q_H}{T_H} = \frac{Q_C}{T_C}$ for a Carnot cycle.

  13. Derive the irreversibility of free expansion using entropy.

  14. Derive the efficiency limitation of a real engine compared to a Carnot engine.

  15. Derive the entropy change for an adiabatic reversible process (isentropic process).


NEET-style Conceptual Problems

  1. What is the unit of efficiency in a heat engine?
  • (a) Dimensionless
  • (b) $\text{J/K}$
  • (c) $\text{m/s}$
  • (d) $\text{Pa}$
  1. What does a negative $\Delta S_{\text{system}}$ indicate in a process?
  • (a) Increase in disorder
  • (b) Decrease in disorder
  • (c) No change in entropy
  • (d) Irreversible process
  1. Which process is inherently irreversible?
  • (a) Isothermal reversible expansion
  • (b) Adiabatic reversible expansion
  • (c) Free expansion
  • (d) Carnot cycle
  1. What happens to Carnot efficiency if $T_H$ increases?
  • (a) Decreases
  • (b) Increases
  • (c) Remains the same
  • (d) Becomes zero
  1. What is the dimension of COP in a refrigerator?
  • (a) Dimensionless
  • (b) $[\text{M} \text{L}^2 \text{T}^{-2} \text{K}^{-1}]$
  • (c) $[\text{L} \text{T}^{-2}]$
  • (d) $[\text{M} \text{L}^2 \text{T}^{-1}]$
  1. What does the second law of thermodynamics determine?
  • (a) Amount of work done
  • (b) Direction of natural processes
  • (c) Temperature of a system
  • (d) Pressure of a system
  1. What is the role of entropy in natural processes?
  • (a) Decreases total disorder
  • (b) Increases total disorder
  • (c) Maintains constant disorder
  • (d) Reduces temperature
  1. What happens to $\Delta S_{\text{total}}$ in an irreversible process?
  • (a) Increases
  • (b) Decreases
  • (c) Remains constant
  • (d) Becomes zero
  1. Why is the Carnot cycle the most efficient?
  • (a) It is irreversible
  • (b) It is reversible with maximum efficiency
  • (c) It rejects no heat
  • (d) It operates at constant temperature
  1. What is the unit of work in a heat engine?
  • (a) $\text{J}$
  • (b) $\text{J/K}$
  • (c) $\text{m/s}$
  • (d) $\text{Pa}$
  1. What does a constant entropy process indicate?
  • (a) Irreversible process
  • (b) Isentropic (reversible adiabatic) process
  • (c) Isothermal process
  • (d) Free expansion
  1. Which type of process increases total entropy?
  • (a) Reversible
  • (b) Irreversible
  • (c) Isentropic
  • (d) Isobaric
  1. What is the direction of spontaneous heat flow according to the second law?
  • (a) From cold to hot
  • (b) From hot to cold
  • (c) No direction
  • (d) Circular
  1. What does a pseudo-force do in a non-inertial frame for thermodynamic processes?
  • (a) Affects entropy perception
  • (b) Affects heat flow
  • (c) Creates work
  • (d) Reduces efficiency
  1. What is the dimension of heat in SI units?
  • (a) $[\text{M} \text{L}^2 \text{T}^{-2}]$
  • (b) $[\text{M} \text{L} \text{T}^{-1}]$
  • (c) $[\text{L} \text{T}^{-2}]$
  • (d) $[\text{M} \text{L}^2 \text{T}^{-1}]$
  1. What is the role of the second law in rocket engine design?
  • (a) Increases efficiency
  • (b) Limits efficiency due to irreversibility
  • (c) Reduces entropy
  • (d) Increases heat transfer
  1. What happens to entropy in an isolated system over time?
  • (a) Decreases
  • (b) Increases or remains constant
  • (c) Becomes zero
  • (d) Remains constant only
  1. Why does heat flow from a hot to a cold reservoir increase entropy?
  • (a) Due to reversible process
  • (b) Due to increase in total disorder
  • (c) Due to decrease in temperature
  • (d) Due to work done
  1. What is the significance of $\frac{T_C}{T_H - T_C}$?
  • (a) Carnot efficiency
  • (b) Carnot refrigerator COP
  • (c) Entropy change
  • (d) Work done
  1. What is the unit of temperature in thermodynamic calculations?
  • (a) Celsius
  • (b) Kelvin
  • (c) Fahrenheit
  • (d) Joule
  1. What does a zero efficiency in a heat engine indicate?
  • (a) No work done
  • (b) Maximum work done
  • (c) No heat absorbed
  • (d) No heat rejected
  1. What is the physical significance of $n R \ln \left( \frac{V_2}{V_1} \right)$?
  • (a) Work done in isothermal process
  • (b) Entropy change in isothermal expansion
  • (c) Heat absorbed
  • (d) Efficiency
  1. Why is free expansion irreversible?
  • (a) $\Delta S_{\text{total}} > 0$
  • (b) $\Delta S_{\text{total}} = 0$
  • (c) $Q > 0$
  • (d) $W > 0$
  1. What is the dimension of $Q_H$ in a heat engine?
  • (a) $[\text{M} \text{L}^2 \text{T}^{-2}]$
  • (b) $[\text{M} \text{L} \text{T}^{-1}]$
  • (c) $[\text{L} \text{T}^{-2}]$
  • (d) $[\text{M} \text{L}^2 \text{T}^{-1}]$
  1. How does entropy analysis help in rocket propulsion?
  • (a) Increases efficiency
  • (b) Quantifies irreversibility in combustion
  • (c) Reduces temperature
  • (d) Decreases work output
  1. What is the role of $T$ in entropy calculations?
  • (a) Measures disorder directly
  • (b) Relates heat transfer to entropy change
  • (c) Determines work done
  • (d) Determines pressure
  1. What does a 100% Carnot efficiency imply?
  • (a) $T_C = 0 , \text{K}$
  • (b) $T_H = 0 , \text{K}$
  • (c) $Q_C = 0$
  • (d) $W = 0$
  1. What is the physical significance of $1 - \frac{Q_C}{Q_H}$?
  • (a) Entropy change
  • (b) Efficiency of a heat engine
  • (c) COP of a refrigerator
  • (d) Work done
  1. What is the dimension of $\Delta S_{\text{total}}$?
  • (a) $[\text{M} \text{L}^2 \text{T}^{-2} \text{K}^{-1}]$
  • (b) $[\text{M} \text{L} \text{T}^{-1}]$
  • (c) $[\text{L} \text{T}^{-2}]$
  • (d) $[\text{M} \text{L}^2 \text{T}^{-1}]$
  1. Why does a real engine have lower efficiency than a Carnot engine?
  • (a) Due to reversible processes
  • (b) Due to irreversibilities like friction
  • (c) Due to higher $T_C$
  • (d) Due to lower $T_H$

NEET-style Numerical Problems

  1. Calculate $\Delta S$ for 1 mole of an ideal gas expanding isothermally and reversibly at 350 K from $V_1 = 0.01 , \text{m}^3$ to $V_2 = 0.02 , \text{m}^3$ ($R = 8.314 , \text{J/mol·K}$).
  • (a) $5.76 , \text{J/K}$
  • (b) $5.77 , \text{J/K}$
  • (c) $5.78 , \text{J/K}$
  • (d) $5.79 , \text{J/K}$
  1. A heat engine absorbs $Q_H = 1200 , \text{J}$ and rejects $Q_C = 800 , \text{J}$. What is the efficiency?
  • (a) $0.32$
  • (b) $0.33$
  • (c) $0.34$
  • (d) $0.35$
  1. A Carnot engine operates between $T_H = 600 , \text{K}$ and $T_C = 300 , \text{K}$. What is the efficiency?
  • (a) $0.49$
  • (b) $0.50$
  • (c) $0.51$
  • (d) $0.52$
  1. A refrigerator removes $Q_C = 600 , \text{J}$ with $W = 150 , \text{J}$. What is the COP?
  • (a) $3.9$
  • (b) $4.0$
  • (c) $4.1$
  • (d) $4.2$
  1. A Carnot refrigerator operates between $T_H = 400 , \text{K}$ and $T_C = 320 , \text{K}$. What is the COP?
    - (a) $3.9$
    - (b) $4.0$
    - (c) $4.1$
    - (d) $4.2$

Back to Chapter

Return to Entropy and the Second Law of Thermodynamics Chapter