Skip to content

Electromagnetic Waves Problems

This section provides 100 problems to test your understanding of electromagnetic waves, including calculations of wave speed, wavelength, frequency, intensity, and energy density, as well as properties like polarization and the electromagnetic spectrum. Inspired by JEE Main, JEE Advanced, and NEET exam patterns, these problems are tailored for exam preparation, offering a mix of numerical, conceptual, and derivation-based challenges. NEET-style problems (66–100) are formatted as multiple-choice questions (MCQs) to match the exam’s objective format. Problems are organized by type to support progressive learning and build confidence in mastering electromagnetism, a key topic for JEE/NEET success.

Numerical Problems

  1. Calculate the speed of an electromagnetic wave in vacuum given μ0=4π×107H/m and ϵ0=8.85×1012C2/(N·m2).

    • (a) 2.99×108m/s
    • (b) 3.00×108m/s
    • (c) 3.01×108m/s
    • (d) 3.02×108m/s
  2. An electromagnetic wave has a frequency f=5×106Hz. Calculate its wavelength λ in vacuum (c=3×108m/s).

    • (a) 59.9m
    • (b) 60.0m
    • (c) 60.1m
    • (d) 60.2m
  3. An electromagnetic wave has a wavelength λ=400nm. Calculate its frequency f in vacuum.

    • (a) 7.49×1014Hz
    • (b) 7.50×1014Hz
    • (c) 7.51×1014Hz
    • (d) 7.52×1014Hz
  4. An electromagnetic wave has an electric field amplitude E0=50V/m. Calculate the magnetic field amplitude B0.

    • (a) 1.66×107T
    • (b) 1.67×107T
    • (c) 1.68×107T
    • (d) 1.69×107T
  5. An electromagnetic wave has a wave number k=2×106m1. Calculate its wavelength λ.

    • (a) 3.14×106m
    • (b) 3.15×106m
    • (c) 3.16×106m
    • (d) 3.17×106m
  6. An electromagnetic wave has an angular frequency ω=4×1015rad/s. Calculate its frequency f.

    • (a) 6.36×1014Hz
    • (b) 6.37×1014Hz
    • (c) 6.38×1014Hz
    • (d) 6.39×1014Hz
  7. An electromagnetic wave has E0=120V/m. Calculate the average intensity I (ϵ0=8.85×1012C2/(N·m2)).

    • (a) 19.1W/m2
    • (b) 19.2W/m2
    • (c) 19.3W/m2
    • (d) 19.4W/m2
  8. An electromagnetic wave has B0=3×107T. Calculate E0.

    • (a) 89.9V/m
    • (b) 90.0V/m
    • (c) 90.1V/m
    • (d) 90.2V/m
  9. An electromagnetic wave has I=10W/m2. Calculate E0.

    • (a) 86.6V/m
    • (b) 86.7V/m
    • (c) 86.8V/m
    • (d) 86.9V/m
  10. An electromagnetic wave has E0=80V/m. Calculate the average energy density uavg.

    • (a) 2.83×108J/m3
    • (b) 2.84×108J/m3
    • (c) 2.85×108J/m3
    • (d) 2.86×108J/m3
  11. An electromagnetic wave has λ=500nm. Calculate k.

    • (a) 1.25×107m1
    • (b) 1.26×107m1
    • (c) 1.27×107m1
    • (d) 1.28×107m1
  12. An electromagnetic wave has f=1012Hz. Calculate λ.

    • (a) 2.99×104m
    • (b) 3.00×104m
    • (c) 3.01×104m
    • (d) 3.02×104m
  13. An electromagnetic wave has E0=200V/m. Calculate I.

    • (a) 53.0W/m2
    • (b) 53.1W/m2
    • (c) 53.2W/m2
    • (d) 53.3W/m2
  14. An electromagnetic wave has B0=1×107T. Calculate uavg.

    • (a) 8.85×109J/m3
    • (b) 8.86×109J/m3
    • (c) 8.87×109J/m3
    • (d) 8.88×109J/m3
  15. An electromagnetic wave has f=3×1015Hz. Calculate ω.

    • (a) 1.88×1016rad/s
    • (b) 1.89×1016rad/s
    • (c) 1.90×1016rad/s
    • (d) 1.91×1016rad/s
  16. An electromagnetic wave has λ=200nm. Calculate f.

    • (a) 1.49×1015Hz
    • (b) 1.50×1015Hz
    • (c) 1.51×1015Hz
    • (d) 1.52×1015Hz
  17. An electromagnetic wave has I=30W/m2. Calculate B0.

    • (a) 1.58×107T
    • (b) 1.59×107T
    • (c) 1.60×107T
    • (d) 1.61×107T
  18. An electromagnetic wave has E0=60V/m. Calculate uavg.

    • (a) 1.59×108J/m3
    • (b) 1.60×108J/m3
    • (c) 1.61×108J/m3
    • (d) 1.62×108J/m3
  19. An electromagnetic wave has k=5×106m1. Calculate ω.

    • (a) 1.49×1015rad/s
    • (b) 1.50×1015rad/s
    • (c) 1.51×1015rad/s
    • (d) 1.52×1015rad/s
  20. An electromagnetic wave has λ=600nm. Calculate k.

    • (a) 1.04×107m1
    • (b) 1.05×107m1
    • (c) 1.06×107m1
    • (d) 1.07×107m1
  21. An electromagnetic wave has f=1018Hz. Calculate λ.

    • (a) 2.99×1010m
    • (b) 3.00×1010m
    • (c) 3.01×1010m
    • (d) 3.02×1010m
  22. An electromagnetic wave has E0=300V/m. Calculate I.

    • (a) 119.4W/m2
    • (b) 119.5W/m2
    • (c) 119.6W/m2
    • (d) 119.7W/m2
  23. An electromagnetic wave has B0=5×107T. Calculate E0.

    • (a) 149.9V/m
    • (b) 150.0V/m
    • (c) 150.1V/m
    • (d) 150.2V/m
  24. An electromagnetic wave has I=50W/m2. Calculate E0.

    • (a) 193.5V/m
    • (b) 193.6V/m
    • (c) 193.7V/m
    • (d) 193.8V/m
  25. An electromagnetic wave has E0=40V/m. Calculate uavg.

    • (a) 7.07×109J/m3
    • (b) 7.08×109J/m3
    • (c) 7.09×109J/m3
    • (d) 7.10×109J/m3
  26. An electromagnetic wave has ω=2×1016rad/s. Calculate f.

    • (a) 3.18×1015Hz
    • (b) 3.19×1015Hz
    • (c) 3.20×1015Hz
    • (d) 3.21×1015Hz
  27. An electromagnetic wave has λ=100nm. Calculate f.

    • (a) 2.99×1015Hz
    • (b) 3.00×1015Hz
    • (c) 3.01×1015Hz
    • (d) 3.02×1015Hz
  28. An electromagnetic wave has k=1×107m1. Calculate λ.

    • (a) 6.28×107m
    • (b) 6.29×107m
    • (c) 6.30×107m
    • (d) 6.31×107m
  29. An electromagnetic wave has f=1016Hz. Calculate ω.

    • (a) 6.28×1016rad/s
    • (b) 6.29×1016rad/s
    • (c) 6.30×1016rad/s
    • (d) 6.31×1016rad/s
  30. An electromagnetic wave has E0=250V/m. Calculate I.

    • (a) 82.9W/m2
    • (b) 83.0W/m2
    • (c) 83.1W/m2
    • (d) 83.2W/m2
  31. A spacecraft uses a radio wave with f=2×108Hz for communication. Calculate λ.

    • (a) 1.49m
    • (b) 1.50m
    • (c) 1.51m
    • (d) 1.52m
  32. An electromagnetic wave has I=100W/m2. Calculate B0.

    • (a) 2.89×107T
    • (b) 2.90×107T
    • (c) 2.91×107T
    • (d) 2.92×107T
  33. An electromagnetic wave has λ=800nm. Calculate k.

    • (a) 7.85×106m1
    • (b) 7.86×106m1
    • (c) 7.87×106m1
    • (d) 7.88×106m1
  34. An electromagnetic wave has B0=4×107T. Calculate uavg.

    • (a) 3.53×108J/m3
    • (b) 3.54×108J/m3
    • (c) 3.55×108J/m3
    • (d) 3.56×108J/m3
  35. An electromagnetic wave has f=1014Hz. Calculate λ.

    • (a) 2.99×106m
    • (b) 3.00×106m
    • (c) 3.01×106m
    • (d) 3.02×106m

Conceptual Problems

  1. What produces electromagnetic waves according to Maxwell’s equations?
  • (a) Static charges
  • (b) Accelerating charges
  • (c) Constant magnetic fields
  • (d) Static electric fields
  1. What is the nature of electromagnetic waves?
  • (a) Longitudinal
  • (b) Transverse
  • (c) Stationary
  • (d) Scalar
  1. What is the unit of intensity of an electromagnetic wave in SI units?
  • (a) W/m²
  • (b) J/m³
  • (c) V/m
  • (d) T
  1. What happens to the wavelength of an electromagnetic wave as its frequency increases?
  • (a) Increases
  • (b) Decreases
  • (c) Remains constant
  • (d) Becomes infinite
  1. What does the electromagnetic spectrum include?
  • (a) Only visible light
  • (b) Radio waves to gamma rays
  • (c) Only infrared waves
  • (d) Only ultraviolet waves
  1. What is the unit of wave number k in SI units?
  • (a) m
  • (b) m⁻¹
  • (c) rad/s
  • (d) Hz
  1. What does the Poynting vector S represent?
  • (a) Energy density
  • (b) Electric field strength
  • (c) Energy flux
  • (d) Magnetic field strength
  1. What happens to the speed of an electromagnetic wave in a medium compared to vacuum?
  • (a) Increases
  • (b) Decreases
  • (c) Remains the same
  • (d) Becomes zero
  1. What does a frequency of 1015Hz indicate in the electromagnetic spectrum?
  • (a) Radio wave
  • (b) Microwave
  • (c) Ultraviolet
  • (d) Gamma ray
  1. What is the dimension of energy density u?
  • (a) [ML1T2]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. What does a zero Poynting vector indicate?
  • (a) No energy transport
  • (b) Maximum energy transport
  • (c) No electric field
  • (d) No magnetic field
  1. What is the significance of 1μ0ϵ0?
  • (a) Wavelength of an electromagnetic wave
  • (b) Speed of light in vacuum
  • (c) Intensity of the wave
  • (d) Energy density
  1. What happens to the intensity of an electromagnetic wave if E0 doubles?
  • (a) Doubles
  • (b) Quadruples
  • (c) Halves
  • (d) Remains the same
  1. What does the polarization of an electromagnetic wave describe?
  • (a) Direction of propagation
  • (b) Direction of the electric field
  • (c) Speed of the wave
  • (d) Frequency of the wave
  1. How do electromagnetic waves assist in spacecraft communication?
  • (a) Increase resistance
  • (b) Enable signal transmission via radio waves
  • (c) Reduce frequency
  • (d) Increase energy density

Derivation Problems

  1. Derive the wave equation for an electromagnetic wave 2E=μ0ϵ02Et2.

  2. Derive the relationship between E0 and B0 in an electromagnetic wave E0=cB0.

  3. Derive the average intensity of an electromagnetic wave I=12ϵ0cE02.

  4. Derive the energy density of an electromagnetic wave u=ϵ0E2.

  5. Derive the Poynting vector for a plane electromagnetic wave S=1μ0E×B.

  6. Derive the wave number k for a wave with wavelength λ, k=2πλ.

  7. Derive the angular frequency ω for a wave with frequency f, ω=2πf.

  8. Derive the speed of an electromagnetic wave in vacuum c=1μ0ϵ0.

  9. Derive the relationship between frequency f and wavelength λ, fλ=c.

  10. Derive the average energy density using B0, uavg=12Brms2μ0.

  11. Derive the electric field amplitude E0 from intensity I, E0=2Iϵ0c.

  12. Derive the magnetic field amplitude B0 from intensity I, B0=2Iμ0c.

  13. Derive the wavelength of a visible light wave with a given frequency.

  14. Derive the frequency of an X-ray with a given wavelength.

  15. Derive the polarization direction of a plane electromagnetic wave.


NEET-style Conceptual Problems

  1. What is the unit of angular frequency ω in SI units?
  • (a) Hz
  • (b) rad/s
  • (c) m⁻¹
  • (d) W/m²
  1. What does a changing electric field produce in an electromagnetic wave?
  • (a) Static electric field
  • (b) Changing magnetic field
  • (c) No field
  • (d) Static magnetic field
  1. What is the relationship between E0 and B0 in an electromagnetic wave?
  • (a) E0=B0
  • (b) E0=cB0
  • (c) E0=B0c
  • (d) E0 is independent of B0
  1. What happens to the speed of an electromagnetic wave in vacuum?
  • (a) Depends on frequency
  • (b) Depends on wavelength
  • (c) Remains constant at c
  • (d) Becomes zero
  1. What is the dimension of the Poynting vector S?
  • (a) [MT3]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. What does the frequency of an electromagnetic wave determine?
  • (a) Speed of the wave
  • (b) Position in the electromagnetic spectrum
  • (c) Energy density
  • (d) Polarization
  1. What is the role of Maxwell’s equations in electromagnetic waves?
  • (a) Predict static fields
  • (b) Predict wave propagation
  • (c) Reduce energy transport
  • (d) Increase wavelength
  1. What happens to the intensity of an electromagnetic wave if B0 doubles?
  • (a) Doubles
  • (b) Quadruples
  • (c) Halves
  • (d) Remains the same
  1. Why does visible light have a frequency range of 4×10147.5×1014Hz?
  • (a) Due to its wavelength range
  • (b) Due to its speed
  • (c) Due to its intensity
  • (d) Due to its polarization
  1. What is the unit of energy density u?
  • (a) J/m³
  • (b) W/m²
  • (c) V/m
  • (d) T
  1. What does a constant intensity of an electromagnetic wave indicate?
  • (a) Changing E0
  • (b) Constant E0
  • (c) No wave propagation
  • (d) No energy transport
  1. Which type of wave is used for long-range communication in spacecraft?
  • (a) Gamma ray
  • (b) X-ray
  • (c) Radio wave
  • (d) Ultraviolet wave
  1. What is the direction of E and B in an electromagnetic wave?
  • (a) Parallel to each other
  • (b) Perpendicular to each other
  • (c) Random
  • (d) Along the propagation direction
  1. What does a pseudo-force do in a non-inertial frame for electromagnetic wave calculations?
  • (a) Affects perceived wave speed
  • (b) Affects charge distribution
  • (c) Creates waves
  • (d) Reduces intensity
  1. What is the dimension of E0/B0?
  • (a) [LT1]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. What is the role of radio waves in spacecraft navigation?
  • (a) Increase intensity
  • (b) Enable long-range communication
  • (c) Reduce wavelength
  • (d) Increase energy density
  1. What happens to the energy density if E0 doubles?
  • (a) Doubles
  • (b) Quadruples
  • (c) Halves
  • (d) Remains the same
  1. Why does the intensity of an electromagnetic wave depend on E02?
  • (a) Due to I=12ϵ0cE02
  • (b) Due to increased wavelength
  • (c) Due to decreased frequency
  • (d) Due to static fields
  1. What is the significance of 2πλ?
  • (a) Angular frequency
  • (b) Wave number
  • (c) Intensity
  • (d) Energy density
  1. What is the unit of E0 in an electromagnetic wave?
  • (a) V/m
  • (b) T
  • (c) A/m
  • (d) W/m²
  1. What does a frequency of 1020Hz indicate in the spectrum?
  • (a) Radio wave
  • (b) Microwave
  • (c) Visible light
  • (d) Gamma ray
  1. What is the physical significance of ϵ0cE02?
  • (a) Wave number
  • (b) Intensity of the wave
  • (c) Speed of the wave
  • (d) Wavelength
  1. Why does the speed of an electromagnetic wave in vacuum not depend on frequency?
  • (a) Due to c=1μ0ϵ0
  • (b) Due to polarization
  • (c) Due to intensity
  • (d) Due to energy density
  1. What is the dimension of 1μ0ϵ0?
  • (a) [LT1]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. How does the electromagnetic spectrum assist in spacecraft imaging?
  • (a) Increases intensity
  • (b) Uses infrared for thermal imaging
  • (c) Reduces frequency
  • (d) Increases wavelength
  1. What is the role of wavelength in the electromagnetic spectrum?
  • (a) Determines the speed
  • (b) Determines the position in the spectrum
  • (c) Determines the intensity
  • (d) Determines the polarization
  1. What does a high intensity of an electromagnetic wave indicate?
  • (a) Low E0
  • (b) High E0
  • (c) No wave propagation
  • (d) No energy transport
  1. What is the physical significance of 2πf?
  • (a) Wave number
  • (b) Angular frequency
  • (c) Intensity
  • (d) Energy density
  1. What is the dimension of E0×B0?
  • (a) [MT3]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. Why does the energy density of an electromagnetic wave depend on E2?
  • (a) Due to u=ϵ0E2
  • (b) Due to increased wavelength
  • (c) Due to decreased frequency
  • (d) Due to static fields

NEET-style Numerical Problems

  1. An electromagnetic wave has f=107Hz. Calculate λ.
  • (a) 29.9m
  • (b) 30.0m
  • (c) 30.1m
  • (d) 30.2m
  1. An electromagnetic wave has E0=150V/m. Calculate B0.
  • (a) 4.99×107T
  • (b) 5.00×107T
  • (c) 5.01×107T
  • (d) 5.02×107T
  1. An electromagnetic wave has λ=700nm. Calculate f.
  • (a) 4.28×1014Hz
  • (b) 4.29×1014Hz
  • (c) 4.30×1014Hz
  • (d) 4.31×1014Hz
  1. An electromagnetic wave has I=25W/m2. Calculate E0.
  • (a) 137.0V/m
  • (b) 137.1V/m
  • (c) 137.2V/m
  • (d) 137.3V/m
  1. An electromagnetic wave has E0=100V/m. Calculate uavg.
    - (a) 4.42×108J/m3
    - (b) 4.43×108J/m3
    - (c) 4.44×108J/m3
    - (d) 4.45×108J/m3

Back to Chapter

Return to Electromagnetic Waves Chapter