Skip to content

Fluids Problems

This section provides 100 problems to test your understanding of fluid mechanics, including fluid statics (density, pressure, buoyancy), fluid dynamics (continuity, Bernoulli’s principle), viscosity (Poiseuille’s law, Stokes’ law), and surface tension (capillary action, droplets). Inspired by JEE Main, JEE Advanced, and NEET exam patterns, these problems are tailored for exam preparation, offering a mix of numerical, conceptual, and derivation-based challenges. NEET-style problems (66–100) are formatted as multiple-choice questions (MCQs) to match the exam’s objective format. Problems are organized by type to support progressive learning and build confidence in mastering fluid mechanics, a key topic for JEE/NEET success.

Numerical Problems

  1. A tank filled with water (ρ=1000kg/m3) has a depth of 3m. Calculate the pressure at the bottom (Patm=1.013×105Pa, g=9.8m/s2).

    • (a) 1.294×105Pa
    • (b) 1.307×105Pa
    • (c) 1.320×105Pa
    • (d) 1.333×105Pa
  2. A wooden block of density 700kg/m3 floats in water (ρ=1000kg/m3). What fraction of the block is submerged?

    • (a) 0.65
    • (b) 0.70
    • (c) 0.75
    • (d) 0.80
  3. A hydraulic lift has an input area A1=0.03m2 and output area A2=0.15m2. If an input force F1=150N is applied, calculate the output force.

    • (a) 700N
    • (b) 725N
    • (c) 750N
    • (d) 775N
  4. A steel ball (ρsteel=7800kg/m3, volume 0.002m3) is submerged in water (ρwater=1000kg/m3, g=9.8m/s2). Calculate the buoyant force.

    • (a) 18.6N
    • (b) 19.0N
    • (c) 19.4N
    • (d) 19.6N
  5. A pipe has cross-sectional areas A1=0.04m2 and A2=0.01m2. If the flow speed at A1 is v1=1.5m/s, calculate v2.

    • (a) 5.5m/s
    • (b) 6.0m/s
    • (c) 6.5m/s
    • (d) 7.0m/s
  6. A tank with a hole at 2m below the surface releases water. Calculate the speed of the water exiting (g=9.8m/s2).

    • (a) 6.1m/s
    • (b) 6.2m/s
    • (c) 6.3m/s
    • (d) 6.4m/s
  7. A horizontal pipe has P1=1.5×105Pa, v1=2m/s, A1=0.05m2, A2=0.02m2. Calculate P2 (ρ=1000kg/m3).

    • (a) 1.425×105Pa
    • (b) 1.430×105Pa
    • (c) 1.435×105Pa
    • (d) 1.440×105Pa
  8. An airfoil has vtop=60m/s, vbottom=50m/s, area A=1.5m2, ρair=1.2kg/m3. Calculate the lift force.

    • (a) 900N
    • (b) 925N
    • (c) 950N
    • (d) 975N
  9. A steel ball (r=0.005m, ρsteel=7800kg/m3) falls in oil (ρoil=800kg/m3, η=0.15Pas, g=9.8m/s2). Calculate the terminal velocity.

    • (a) 4.70m/s
    • (b) 4.80m/s
    • (c) 4.90m/s
    • (d) 5.00m/s
  10. A tube of radius 0.004m, length 0.2m, has ΔP=800Pa, η=0.001Pas. Calculate the flow rate.

    • (a) 1.61×105m3/s
    • (b) 1.63×105m3/s
    • (c) 1.65×105m3/s
    • (d) 1.67×105m3/s
  11. A water droplet of radius 0.002m has surface tension γ=0.072N/m. Calculate the excess pressure inside.

    • (a) 70Pa
    • (b) 72Pa
    • (c) 74Pa
    • (d) 76Pa
  12. A capillary tube of radius 0.0004m is placed in water (γ=0.072N/m, ρ=1000kg/m3, g=9.8m/s2). Calculate the height of rise.

    • (a) 35.5mm
    • (b) 36.0mm
    • (c) 36.5mm
    • (d) 37.0mm
  13. A tank filled with mercury (ρ=13600kg/m3) has a depth of 1.5m. Calculate the pressure at the bottom (Patm=1.013×105Pa, g=9.8m/s2).

    • (a) 3.00×105Pa
    • (b) 3.01×105Pa
    • (c) 3.02×105Pa
    • (d) 3.03×105Pa
  14. A block of density 400kg/m3 floats in a liquid of density 800kg/m3. What fraction of the block is submerged?

    • (a) 0.45
    • (b) 0.50
    • (c) 0.55
    • (d) 0.60
  15. A hydraulic lift has A1=0.01m2 and A2=0.05m2. If F1=100N, calculate F2.

    • (a) 450N
    • (b) 475N
    • (c) 500N
    • (d) 525N
  16. A copper sphere (ρcopper=8900kg/m3, volume 0.0005m3) is submerged in oil (ρoil=850kg/m3, g=9.8m/s2). Calculate the buoyant force.

    • (a) 4.1N
    • (b) 4.2N
    • (c) 4.3N
    • (d) 4.4N
  17. A pipe has A1=0.06m2 and A2=0.03m2. If v1=1m/s, calculate v2.

    • (a) 1.5m/s
    • (b) 2.0m/s
    • (c) 2.5m/s
    • (d) 3.0m/s
  18. A tank with a hole at 1m below the surface releases water. Calculate the exit speed (g=9.8m/s2).

    • (a) 4.3m/s
    • (b) 4.4m/s
    • (c) 4.5m/s
    • (d) 4.6m/s
  19. A horizontal pipe has P1=1.8×105Pa, v1=1.5m/s, A1=0.03m2, A2=0.01m2. Calculate P2 (ρ=1000kg/m3).

    • (a) 1.775×105Pa
    • (b) 1.780×105Pa
    • (c) 1.785×105Pa
    • (d) 1.790×105Pa
  20. An airfoil has vtop=70m/s, vbottom=60m/s, A=2m2, ρair=1.2kg/m3. Calculate the lift force.

    • (a) 1500N
    • (b) 1525N
    • (c) 1550N
    • (d) 1575N
  21. A glass sphere (r=0.002m, ρglass=2500kg/m3) falls in water (ρwater=1000kg/m3, η=0.001Pas, g=9.8m/s2). Calculate the terminal velocity.

    • (a) 0.65m/s
    • (b) 0.66m/s
    • (c) 0.67m/s
    • (d) 0.68m/s
  22. A tube of radius 0.003m, length 0.15m, has ΔP=1200Pa, η=0.002Pas. Calculate the flow rate.

    • (a) 1.27×105m3/s
    • (b) 1.28×105m3/s
    • (c) 1.29×105m3/s
    • (d) 1.30×105m3/s
  23. A soap bubble of radius 0.015m has surface tension γ=0.025N/m. Calculate the excess pressure inside.

    • (a) 6.5Pa
    • (b) 6.6Pa
    • (c) 6.7Pa
    • (d) 6.8Pa
  24. A capillary tube of radius 0.0002m is placed in water (γ=0.072N/m, ρ=1000kg/m3, g=9.8m/s2). Calculate the height of rise.

    • (a) 72.0mm
    • (b) 73.0mm
    • (c) 74.0mm
    • (d) 75.0mm
  25. A tank filled with oil (ρ=900kg/m3) has a depth of 4m. Calculate the pressure at the bottom (Patm=1.013×105Pa, g=9.8m/s2).

    • (a) 1.346×105Pa
    • (b) 1.347×105Pa
    • (c) 1.348×105Pa
    • (d) 1.349×105Pa
  26. A block of density 500kg/m3 floats in mercury (ρ=13600kg/m3). What fraction of the block is submerged?

    • (a) 0.035
    • (b) 0.036
    • (c) 0.037
    • (d) 0.038
  27. A hydraulic lift has A1=0.02m2 and A2=0.08m2. If F1=120N, calculate F2.

    • (a) 450N
    • (b) 475N
    • (c) 480N
    • (d) 500N
  28. A lead sphere (ρlead=11300kg/m3, volume 0.0001m3) is submerged in water (ρwater=1000kg/m3, g=9.8m/s2). Calculate the buoyant force.

    • (a) 0.95N
    • (b) 0.96N
    • (c) 0.97N
    • (d) 0.98N
  29. A pipe has A1=0.08m2 and A2=0.04m2. If v1=0.5m/s, calculate v2.

    • (a) 0.8m/s
    • (b) 0.9m/s
    • (c) 1.0m/s
    • (d) 1.1m/s
  30. A tank with a hole at 0.5m below the surface releases water. Calculate the exit speed (g=9.8m/s2).

    • (a) 3.0m/s
    • (b) 3.1m/s
    • (c) 3.2m/s
    • (d) 3.3m/s
  31. A horizontal pipe has P1=2.0×105Pa, v1=1m/s, A1=0.06m2, A2=0.03m2. Calculate P2 (ρ=1000kg/m3).

    • (a) 1.995×105Pa
    • (b) 1.996×105Pa
    • (c) 1.997×105Pa
    • (d) 1.998×105Pa
  32. A cylindrical pipe (r=0.001m, L=0.3m, η=0.0015Pas) has Q=5×106m3/s. Calculate ΔP.

    • (a) 1432Pa
    • (b) 1433Pa
    • (c) 1434Pa
    • (d) 1435Pa
  33. A rocket fuel droplet (r=0.0002m, γ=0.03N/m) is atomized. Calculate the excess pressure inside.

    • (a) 300Pa
    • (b) 305Pa
    • (c) 310Pa
    • (d) 315Pa
  34. A capillary tube of radius 0.0001m is placed in mercury (γ=0.465N/m, ρ=13600kg/m3, g=9.8m/s2, contact angle θ=140, cos1400.766). Calculate the depression height.

    • (a) 50.5mm
    • (b) 51.0mm
    • (c) 51.5mm
    • (d) 52.0mm
  35. A rocket nozzle (radius 0.04m) moves at 150m/s through air (η=1.8×105Pas). Calculate the viscous drag force.

    • (a) 0.33N
    • (b) 0.34N
    • (c) 0.35N
    • (d) 0.36N

Conceptual Problems

  1. What does pressure in a fluid depend on at a given depth?
  • (a) Surface area
  • (b) Density, gravity, and depth
  • (c) Volume of the fluid
  • (d) Shape of the container
  1. What does Archimedes’ principle state?
  • (a) Pressure increases with depth
  • (b) Buoyant force equals the weight of displaced fluid
  • (c) Fluid speed increases in narrower sections
  • (d) Pressure is transmitted equally in a fluid
  1. What does the continuity equation imply for an incompressible fluid?
  • (a) Pressure is constant
  • (b) Flow speed is constant
  • (c) Mass flow rate is constant
  • (d) Volume decreases with speed
  1. What does Bernoulli’s principle conserve in fluid flow?
  • (a) Mass
  • (b) Momentum
  • (c) Energy per unit volume
  • (d) Viscosity
  1. What is the unit of viscosity?
  • (a) Pas
  • (b) N/m
  • (c) Pa
  • (d) m/s
  1. What happens to flow speed in a pipe when the cross-sectional area decreases?
  • (a) Decreases
  • (b) Increases
  • (c) Remains the same
  • (d) Becomes zero
  1. What does a high surface tension indicate?
  • (a) Low cohesive forces
  • (b) High cohesive forces
  • (c) Low viscosity
  • (d) High density
  1. What is the physical significance of 2γr?
  • (a) Excess pressure inside a droplet
  • (b) Excess pressure inside a soap bubble
  • (c) Capillary rise
  • (d) Viscous force
  1. What does Stokes’ law describe?
  • (a) Flow rate in a pipe
  • (b) Drag force on a sphere in a fluid
  • (c) Pressure in a fluid
  • (d) Surface tension in a droplet
  1. What is the dimension of surface tension?
  • (a) [MT2]
  • (b) [MLT1]
  • (c) [ML2T1]
  • (d) [LT2]
  1. What does a zero velocity gradient imply in a fluid?
  • (a) No viscous force
  • (b) Maximum viscous force
  • (c) High flow rate
  • (d) Low pressure
  1. What is the significance of πr4ΔP8ηL?
  • (a) Buoyant force
  • (b) Volume flow rate
  • (c) Terminal velocity
  • (d) Excess pressure
  1. What happens to pressure in a fluid as flow speed increases, per Bernoulli’s principle?
  • (a) Increases
  • (b) Decreases
  • (c) Remains the same
  • (d) Becomes zero
  1. What does a low contact angle in capillary action indicate?
  • (a) Fluid rises in the tube
  • (b) Fluid depresses in the tube
  • (c) No rise or depression
  • (d) High viscosity
  1. How does viscosity affect flow rate in a pipe?
  • (a) Increases flow rate
  • (b) Decreases flow rate
  • (c) No effect
  • (d) Increases pressure

Derivation Problems

  1. Derive the pressure in a fluid at depth P=P0+ρgh.

  2. Derive Archimedes’ principle for the buoyant force.

  3. Derive the continuity equation A1v1=A2v2.

  4. Derive Bernoulli’s equation for fluid flow.

  5. Derive the viscous force equation F=ηAvd.

  6. Derive Poiseuille’s law Q=πr4ΔP8ηL.

  7. Derive the excess pressure inside a droplet ΔP=2γr.

  8. Derive the capillary rise formula h=2γcosθρgr.

  9. Derive the terminal velocity using Stokes’ law.

  10. Derive the velocity of efflux (Torricelli’s law) v=2gh.

  11. Derive the lift force on an airfoil using Bernoulli’s principle.

  12. Derive the excess pressure inside a soap bubble ΔP=4γr.

  13. Derive Pascal’s principle for pressure transmission in a hydraulic system.

  14. Derive the fraction submerged for a floating object.

  15. Derive the viscous drag force on a rocket nozzle using Stokes’ law.


NEET-style Conceptual Problems

  1. What is the unit of pressure in SI units?
  • (a) Pa
  • (b) N/m
  • (c) J
  • (d) kg/m3
  1. What does a floating object displace in a fluid?
  • (a) Fluid equal to its volume
  • (b) Fluid equal to its weight
  • (c) Fluid equal to its density
  • (d) Fluid equal to its surface area
  1. Which principle explains the operation of a hydraulic lift?
  • (a) Archimedes’ principle
  • (b) Bernoulli’s principle
  • (c) Pascal’s principle
  • (d) Continuity principle
  1. What happens to a fluid’s speed in a pipe when the cross-sectional area increases?
  • (a) Increases
  • (b) Decreases
  • (c) Remains the same
  • (d) Becomes zero
  1. What is the dimension of viscosity?
  • (a) [ML1T1]
  • (b) [MLT1]
  • (c) [ML2T1]
  • (d) [LT2]
  1. What does Bernoulli’s principle apply to?
  • (a) Fluids at rest
  • (b) Ideal fluids in steady flow
  • (c) Viscous fluids
  • (d) Compressible fluids
  1. What is the role of surface tension in a droplet?
  • (a) Increases volume
  • (b) Creates excess pressure inside
  • (c) Reduces viscosity
  • (d) Increases density
  1. What happens to terminal velocity as the radius of a falling sphere increases?
  • (a) Decreases
  • (b) Increases
  • (c) Remains the same
  • (d) Becomes zero
  1. Why does a fluid rise in a capillary tube with a small radius?
  • (a) High viscosity
  • (b) Surface tension and low contact angle
  • (c) Low density
  • (d) High pressure
  1. What is the unit of volume flow rate?
  • (a) m3/s
  • (b) m/s
  • (c) Pa
  • (d) N/m
  1. What does a constant Av indicate in fluid flow?
  • (a) Bernoulli’s principle
  • (b) Continuity equation
  • (c) Pascal’s principle
  • (d) Stokes’ law
  1. Which type of force causes lift on an airfoil?
  • (a) Viscous force
  • (b) Pressure difference
  • (c) Buoyant force
  • (d) Surface tension
  1. What is the direction of the buoyant force?
  • (a) Downward
  • (b) Upward
  • (c) Horizontal
  • (d) Along the flow
  1. What does a pseudo-force do in a rotating fluid frame?
  • (a) Maintains flow rate
  • (b) Affects pressure calculations
  • (c) Provides buoyant force
  • (d) Reduces viscosity
  1. What is the dimension of pressure?
  • (a) [ML1T2]
  • (b) [MLT1]
  • (c) [ML2T1]
  • (d) [LT2]
  1. What is the role of viscosity in a rocket fuel system?
  • (a) Increases flow rate
  • (b) Resists flow, affecting fuel delivery
  • (c) Increases pressure
  • (d) Reduces surface tension
  1. What happens to excess pressure inside a droplet as radius decreases?
  • (a) Decreases
  • (b) Increases
  • (c) Remains the same
  • (d) Becomes zero
  1. Why does Bernoulli’s principle lead to lift on a wing?
  • (a) Higher speed, higher pressure
  • (b) Higher speed, lower pressure
  • (c) Lower speed, lower pressure
  • (d) No pressure change
  1. What is the significance of 6πηrv?
  • (a) Buoyant force
  • (b) Viscous drag on a sphere
  • (c) Surface tension force
  • (d) Pressure in a pipe
  1. What is the unit of density?
  • (a) kg/m3
  • (b) Pa
  • (c) N/m
  • (d) m/s
  1. What does a zero flow speed at the surface of a tank indicate?
  • (a) No pressure
  • (b) Maximum pressure
  • (c) Torricelli’s law applies
  • (d) No viscosity
  1. What is the physical significance of 2gh?
  • (a) Terminal velocity
  • (b) Velocity of efflux
  • (c) Capillary rise
  • (d) Viscous force
  1. Why does a soap bubble have higher excess pressure than a droplet of the same radius?
  • (a) Two surfaces vs. one
  • (b) Higher surface tension
  • (c) Lower viscosity
  • (d) Higher density
  1. What is the dimension of volume flow rate?
  • (a) [L3T1]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. How does surface tension affect fuel atomization in a rocket?
  • (a) Increases droplet size
  • (b) Creates pressure to break droplets
  • (c) Reduces viscosity
  • (d) Increases flow rate
  1. What is the role of buoyancy in a hot air balloon?
  • (a) Increases pressure
  • (b) Provides lift by displacing air
  • (c) Increases viscosity
  • (d) Reduces surface tension
  1. What does a zero pressure difference in a pipe indicate?
  • (a) No flow
  • (b) Maximum flow
  • (c) High viscosity
  • (d) Low density
  1. What is the physical significance of 2γcosθρgr?
  • (a) Excess pressure
  • (b) Terminal velocity
  • (c) Capillary rise height
  • (d) Flow rate
  1. What is the dimension of lift force?
  • (a) [MLT2]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. Why does viscosity decrease with temperature in most liquids?
  • (a) Increased molecular motion
  • (b) Decreased density
  • (c) Increased surface tension
  • (d) Decreased pressure

NEET-style Numerical Problems

  1. A tank filled with water (ρ=1000kg/m3) has a depth of 1m. What is the pressure at the bottom (Patm=1.013×105Pa, g=9.8m/s2)?
  • (a) 1.111×105Pa
  • (b) 1.112×105Pa
  • (c) 1.113×105Pa
  • (d) 1.114×105Pa
  1. A pipe has A1=0.02m2 and A2=0.01m2. If v1=2m/s, what is v2?
  • (a) 3.5m/s
  • (b) 4.0m/s
  • (c) 4.5m/s
  • (d) 5.0m/s
  1. A steel ball (r=0.003m, ρsteel=7800kg/m3) falls in water (ρwater=1000kg/m3, η=0.001Pas, g=9.8m/s2). What is the terminal velocity?
  • (a) 2.35m/s
  • (b) 2.36m/s
  • (c) 2.37m/s
  • (d) 2.38m/s
  1. A water droplet of radius 0.0015m has γ=0.072N/m. What is the excess pressure inside?
  • (a) 95Pa
  • (b) 96Pa
  • (c) 97Pa
  • (d) 98Pa
  1. A capillary tube of radius 0.0003m is placed in water (γ=0.072N/m, ρ=1000kg/m3, g=9.8m/s2). What is the height of rise?
    - (a) 48.5mm
    - (b) 49.0mm
    - (c) 49.5mm
    - (d) 50.0mm

Back to Chapter

Return to Fluids Chapter