Skip to content

Force and Motion—II Problems

This section provides 100 problems to test your understanding of advanced force and motion concepts, including static and kinetic friction, circular motion dynamics (centripetal force, banking), drag forces and terminal velocity, and applications in complex systems (e.g., pulley systems with friction, non-inertial frames). Inspired by JEE Main, JEE Advanced, and NEET exam patterns, these problems are tailored for exam preparation, offering a mix of numerical, conceptual, and derivation-based challenges. NEET-style problems (66–100) are formatted as multiple-choice questions (MCQs) to match the exam’s objective format. Problems are organized by type to support progressive learning and build confidence in mastering advanced dynamics, a key topic for JEE/NEET success.

Numerical Problems

  1. A 6kg block on a surface with μs=0.4 (g=9.8m/s2). Calculate the force needed to start the block moving.

    • (a) 20.0N
    • (b) 23.5N
    • (c) 27.0N
    • (d) 29.5N
  2. A 4kg block on a surface with μk=0.3 (g=9.8m/s2) is pushed by F=20N. Calculate the acceleration.

    • (a) 1.0m/s2
    • (b) 1.5m/s2
    • (c) 2.0m/s2
    • (d) 2.5m/s2
  3. A 0.2kg ball on a string of length 1m moves in a horizontal circle at v=3m/s. Calculate the tension in the string.

    • (a) 1.96N
    • (b) 2.50N
    • (c) 3.04N
    • (d) 3.58N
  4. A car of mass 1000kg on a banked curve of radius 80m at v=20m/s (g=9.8m/s2). Find the banking angle.

    • (a) 20
    • (b) 25
    • (c) 30
    • (d) 35
  5. A 0.05kg raindrop falls with vt=8m/s (g=9.8m/s2, linear drag Fd=bv). Calculate the drag coefficient b.

    • (a) 0.049kg/s
    • (b) 0.061kg/s
    • (c) 0.073kg/s
    • (d) 0.085kg/s
  6. A 10kg block on an incline at 30 with μk=0.2 (g=9.8m/s2) is pushed by F=60N parallel to the incline. Calculate the acceleration down the incline.

    • (a) 8.0m/s2
    • (b) 9.0m/s2
    • (c) 10.0m/s2
    • (d) 11.0m/s2
  7. Masses m1=12kg (hanging) and m2=6kg on a surface with μk=0.1 (g=9.8m/s2) in an Atwood’s setup. Calculate the acceleration.

    • (a) 5.0m/s2
    • (b) 5.5m/s2
    • (c) 6.0m/s2
    • (d) 6.5m/s2
  8. A 1500kg car on a flat curve of radius 120m with μs=0.5 at v=25m/s (g=9.8m/s2). Will the car skid?

    • (a) Yes
    • (b) No
    • (c) Cannot determine
    • (d) Depends on the car's mass
  9. A 0.3kg mass in a conical pendulum with L=0.8m, angle θ=45 (g=9.8m/s2). Calculate the period.

    • (a) 1.2s
    • (b) 1.4s
    • (c) 1.6s
    • (d) 1.8s
  10. A skydiver of mass 80kg reaches terminal velocity (g=9.8m/s2, ρ=1.2kg/m3, Cd=1, A=0.9m2). Calculate vt.

    • (a) 35m/s
    • (b) 40m/s
    • (c) 45m/s
    • (d) 50m/s
  11. A 5kg block on a surface with μs=0.6 (g=9.8m/s2). Calculate the force needed to start the block moving.

    • (a) 24.5N
    • (b) 29.4N
    • (c) 34.3N
    • (d) 39.2N
  12. A 3kg block on a surface with μk=0.2 (g=9.8m/s2) moves at constant speed with force F. Calculate F.

    • (a) 5.0N
    • (b) 5.88N
    • (c) 6.5N
    • (d) 7.0N
  13. A 0.1kg ball on a string of length 0.5m moves in a horizontal circle at v=2m/s. Calculate the tension.

    • (a) 0.98N
    • (b) 1.24N
    • (c) 1.50N
    • (d) 1.76N
  14. A 1200kg car on a banked curve of radius 60m at v=18m/s (g=9.8m/s2). Calculate the banking angle.

    • (a) 18
    • (b) 23
    • (c) 28
    • (d) 33
  15. A 0.02kg object falls with vt=6m/s (g=9.8m/s2, linear drag Fd=bv). Calculate v after 0.1s from rest.

    • (a) 1.0m/s
    • (b) 1.2m/s
    • (c) 1.4m/s
    • (d) 1.6m/s
  16. A 8kg block on an incline at 45 with μk=0.3 (g=9.8m/s2). Calculate the acceleration down the incline.

    • (a) 3.0m/s2
    • (b) 3.5m/s2
    • (c) 4.0m/s2
    • (d) 4.5m/s2
  17. Masses m1=15kg (hanging) and m2=5kg on a surface with μk=0.2 (g=9.8m/s2) in an Atwood’s setup. Calculate the acceleration.

    • (a) 6.0m/s2
    • (b) 6.5m/s2
    • (c) 7.0m/s2
    • (d) 7.5m/s2
  18. A 2000kg car on a flat curve of radius 150m with μs=0.7 at v=30m/s (g=9.8m/s2). Will the car skid?

    • (a) Yes
    • (b) No
    • (c) Cannot determine
    • (d) Depends on the car's mass
  19. A 0.4kg mass in a conical pendulum with L=1m, angle θ=30 (g=9.8m/s2). Calculate the period.

    • (a) 1.6s
    • (b) 1.8s
    • (c) 2.0s
    • (d) 2.2s
  20. A skydiver of mass 90kg reaches terminal velocity (g=9.8m/s2, ρ=1.2kg/m3, Cd=1, A=1.0m2). Calculate vt.

    • (a) 38m/s
    • (b) 43m/s
    • (c) 48m/s
    • (d) 53m/s
  21. A 7kg block on a surface with μs=0.3 (g=9.8m/s2). Calculate the force needed to start the block moving.

    • (a) 15.0N
    • (b) 17.5N
    • (c) 20.0N
    • (d) 22.5N
  22. A 2kg block on a surface with μk=0.4 (g=9.8m/s2) is pushed by F=15N. Calculate the acceleration.

    • (a) 1.0m/s2
    • (b) 1.5m/s2
    • (c) 2.0m/s2
    • (d) 2.5m/s2
  23. A 0.15kg ball on a string of length 0.6m moves in a horizontal circle at v=2.5m/s. Calculate the tension.

    • (a) 1.47N
    • (b) 1.82N
    • (c) 2.17N
    • (d) 2.52N
  24. A 800kg car on a banked curve of radius 40m at v=16m/s (g=9.8m/s2). Calculate the banking angle.

    • (a) 22
    • (b) 27
    • (c) 32
    • (d) 37
  25. A 0.03kg object falls with vt=12m/s (g=9.8m/s2, linear drag Fd=bv). Calculate v after 0.15s from rest.

    • (a) 1.5m/s
    • (b) 1.8m/s
    • (c) 2.1m/s
    • (d) 2.4m/s
  26. A 6kg block on an incline at 37 with μk=0.25 (g=9.8m/s2). Calculate the acceleration down the incline.

    • (a) 2.5m/s2
    • (b) 3.0m/s2
    • (c) 3.5m/s2
    • (d) 4.0m/s2
  27. Masses m1=20kg (hanging) and m2=10kg on a surface with μk=0.15 (g=9.8m/s2) in an Atwood’s setup. Calculate the acceleration.

    • (a) 5.5m/s2
    • (b) 6.0m/s2
    • (c) 6.5m/s2
    • (d) 7.0m/s2
  28. A 1000kg car on a flat curve of radius 90m with μs=0.8 at v=28m/s (g=9.8m/s2). Will the car skid?

    • (a) Yes
    • (b) No
    • (c) Cannot determine
    • (d) Depends on the car's mass
  29. A 0.25kg mass in a conical pendulum with L=0.7m, angle θ=60 (g=9.8m/s2). Calculate the period.

    • (a) 1.0s
    • (b) 1.2s
    • (c) 1.4s
    • (d) 1.6s
  30. A skydiver of mass 60kg reaches terminal velocity (g=9.8m/s2, ρ=1.2kg/m3, Cd=1, A=0.6m2). Calculate vt.

    • (a) 35m/s
    • (b) 40m/s
    • (c) 45m/s
    • (d) 50m/s
  31. A 4kg block on an incline at 53 with μk=0.3 (g=9.8m/s2), pulled by F=50N at 30 above the incline. Calculate the acceleration.

    • (a) 12.0m/s2
    • (b) 13.0m/s2
    • (c) 14.0m/s2
    • (d) 15.0m/s2
  32. A 9kg block on an incline at 30 with μs=0.5 (g=9.8m/s2). Will the block slide?

    • (a) Yes
    • (b) No
    • (c) Cannot determine
    • (d) Depends on the mass
  33. A 0.5kg mass in a conical pendulum with L=1.2m, angle θ=37 (g=9.8m/s2). Calculate the tension.

    • (a) 5.0N
    • (b) 5.5N
    • (c) 6.0N
    • (d) 6.5N
  34. A 0.01kg object falls with vt=4m/s (g=9.8m/s2, linear drag Fd=bv). Calculate v after 0.05s from rest.

    • (a) 0.5m/s
    • (b) 0.7m/s
    • (c) 0.9m/s
    • (d) 1.1m/s
  35. A 3kg block on an incline at 37 with μs=0.4 (g=9.8m/s2), in a frame accelerating at aframe=1.5i^m/s2 (along the incline). Will the block slide?

    • (a) Yes
    • (b) No
    • (c) Cannot determine
    • (d) Depends on the mass

Conceptual Problems

  1. What is the main difference between static and kinetic friction?
  • (a) Static friction acts during motion, kinetic friction prevents motion
  • (b) Static friction prevents motion, kinetic friction acts during motion
  • (c) Static friction is constant, kinetic friction varies
  • (d) Static friction depends on speed, kinetic friction does not
  1. What provides the centripetal force for a car on a flat curve?
  • (a) Normal force
  • (b) Friction
  • (c) Gravity
  • (d) Tension
  1. What does terminal velocity represent?
  • (a) Maximum speed due to drag balancing gravity
  • (b) Minimum speed due to drag
  • (c) Speed at which drag is zero
  • (d) Speed at which acceleration increases
  1. What is the purpose of banking a road?
  • (a) To increase friction
  • (b) To provide centripetal force via the normal force
  • (c) To reduce speed
  • (d) To increase drag
  1. What is the unit of the drag coefficient b in linear drag (Fd=bv)?
  • (a) kg/s
  • (b) kg/m
  • (c) m/s
  • (d) Unitless
  1. What happens to acceleration when friction increases?
  • (a) Increases
  • (b) Decreases
  • (c) Remains the same
  • (d) Becomes zero
  1. What is the direction of centripetal force?
  • (a) Tangent to the circle
  • (b) Away from the center
  • (c) Toward the center
  • (d) Along the velocity
  1. What does a drag force depend on for quadratic drag?
  • (a) Speed only
  • (b) Speed squared, fluid density, area
  • (c) Mass only
  • (d) Acceleration
  1. How does friction affect an Atwood’s machine with one block on a surface?
  • (a) Increases acceleration
  • (b) Decreases acceleration
  • (c) Does not affect acceleration
  • (d) Causes constant velocity
  1. What is the dimension of centripetal force?
  • (a) [MLT2]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T2]
  1. What does a zero acceleration in circular motion imply?
  • (a) No centripetal force
  • (b) Straight-line motion
  • (c) Constant speed
  • (d) Zero velocity
  1. What happens to terminal velocity if mass increases?
  • (a) Decreases
  • (b) Increases
  • (c) Remains the same
  • (d) Becomes zero
  1. What is the role of friction in a complex system on an incline?
  • (a) Increases acceleration
  • (b) Opposes motion
  • (c) Provides centripetal force
  • (d) Increases normal force
  1. What is the significance of μs in friction problems?
  • (a) Determines kinetic friction
  • (b) Determines maximum static friction
  • (c) Determines drag force
  • (d) Determines centripetal force
  1. How does a pseudo-force affect motion in a non-inertial frame on an incline?
  • (a) Acts along the incline
  • (b) Acts opposite the frame’s acceleration
  • (c) Acts perpendicular to the incline
  • (d) Acts along gravity

Derivation Problems

  1. Derive the maximum static friction force for a block on a horizontal surface.

  2. Derive the condition for a block to start sliding on an incline with static friction.

  3. Derive the centripetal force for a conical pendulum.

  4. Derive the banking angle for a car on a curved road without friction.

  5. Derive the terminal velocity for an object with quadratic drag.

  6. Derive the acceleration of a block on an incline with kinetic friction.

  7. Derive the acceleration in an Atwood’s machine with friction on one block.

  8. Derive the condition for a car to skid on a flat curve.

  9. Derive the period of a conical pendulum.

  10. Derive the terminal velocity for an object with linear drag.

  11. Derive the acceleration of a block on an incline with friction and an applied force at an angle.

  12. Derive the tension in a string for a mass in circular motion in a vertical plane.

  13. Derive the velocity as a function of time for linear drag.

  14. Derive the pseudo-force effect on a block in a non-inertial frame on an incline.

  15. Derive the centripetal force provided by friction for a car on a banked curve with friction.


NEET-style Conceptual Problems

  1. What is the unit of friction in SI units?
  • (a) kg
  • (b) N
  • (c) m/s2
  • (d) J
  1. What does a zero acceleration in circular motion indicate?
  • (a) No centripetal force
  • (b) Straight-line motion
  • (c) Constant speed
  • (d) Zero velocity
  1. Which force provides centripetal force in a conical pendulum?
  • (a) Gravity
  • (b) Tension
  • (c) Friction
  • (d) Normal force
  1. What happens to terminal velocity if the area of an object increases?
  • (a) Increases
  • (b) Decreases
  • (c) Remains the same
  • (d) Becomes zero
  1. What is the dimension of the drag coefficient b in linear drag?
  • (a) [MT1]
  • (b) [MLT1]
  • (c) [LT1]
  • (d) [MLT2]
  1. What does static friction do?
  • (a) Opposes motion once started
  • (b) Prevents motion from starting
  • (c) Increases acceleration
  • (d) Acts during motion
  1. What is the role of the normal force in banking of roads?
  • (a) Opposes motion
  • (b) Provides centripetal force component
  • (c) Causes friction
  • (d) Reduces speed
  1. What happens to the centripetal force if speed doubles?
  • (a) Doubles
  • (b) Quadruples
  • (c) Halves
  • (d) Remains the same
  1. Why does friction act opposite to motion?
  • (a) To increase acceleration
  • (b) To oppose relative motion
  • (c) To provide centripetal force
  • (d) To increase normal force
  1. What is the unit of terminal velocity?
  • (a) m/s
  • (b) m/s2
  • (c) N
  • (d) kg
  1. What does a constant speed in circular motion imply?
  • (a) Zero centripetal force
  • (b) Constant centripetal force
  • (c) Changing centripetal force
  • (d) Zero velocity
  1. Which force opposes motion in a pulley system with friction?
  • (a) Tension
  • (b) Gravity
  • (c) Friction
  • (d) Normal force
  1. What is the direction of drag force on a falling object?
  • (a) Downward
  • (b) Upward
  • (c) Sideways
  • (d) Along the velocity
  1. What does a pseudo-force in a non-inertial frame do?
  • (a) Increases acceleration
  • (b) Accounts for the frame’s acceleration
  • (c) Provides centripetal force
  • (d) Opposes gravity
  1. What is the dimension of friction?
  • (a) [MLT2]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T2]
  1. What is the role of friction in circular motion?
  • (a) Provides centripetal force
  • (b) Increases speed
  • (c) Reduces radius
  • (d) Opposes gravity
  1. What happens to acceleration on an incline if friction increases?
  • (a) Increases
  • (b) Decreases
  • (c) Remains the same
  • (d) Becomes zero
  1. Why does terminal velocity depend on mass?
  • (a) Drag force increases with mass
  • (b) Gravity increases with mass
  • (c) Area increases with mass
  • (d) Density increases with mass
  1. What is the significance of tanθ in banking of roads?
  • (a) Relates speed to radius and gravity
  • (b) Determines friction
  • (c) Determines drag
  • (d) Determines normal force
  1. What does kinetic friction do?
  • (a) Prevents motion
  • (b) Opposes motion once started
  • (c) Increases acceleration
  • (d) Acts before motion starts
  1. What is the unit of centripetal force?
  • (a) kg
  • (b) N
  • (c) m/s2
  • (d) J
  1. What does drag force cause in a falling object?
  • (a) Constant acceleration
  • (b) Terminal velocity
  • (c) Circular motion
  • (d) Zero velocity
  1. Why does friction depend on the normal force?
  • (a) Normal force determines speed
  • (b) Normal force presses surfaces together
  • (c) Normal force determines area
  • (d) Normal force determines drag
  1. What is the dimension of the drag coefficient in quadratic drag?
  • (a) Unitless
  • (b) [MT1]
  • (c) [LT1]
  • (d) [MLT2]
  1. How does a pseudo-force affect a block on an incline?
  • (a) Increases normal force
  • (b) Acts along or against motion
  • (c) Provides centripetal force
  • (d) Reduces friction
  1. What is the role of friction in a pulley system with friction?
  • (a) Increases tension
  • (b) Decreases acceleration
  • (c) Provides centripetal force
  • (d) Increases normal force
  1. What does a zero centripetal force indicate?
  • (a) Circular motion
  • (b) Straight-line motion
  • (c) Zero velocity
  • (d) Zero speed
  1. What is the physical significance of vt?
  • (a) Maximum speed due to drag
  • (b) Minimum speed due to drag
  • (c) Centripetal speed
  • (d) Acceleration
  1. What is the dimension of banking angle?
  • (a) Unitless
  • (b) [LT1]
  • (c) [MLT2]
  • (d) [LT2]
  1. Why does friction act on a block on an incline?
  • (a) To provide centripetal force
  • (b) To oppose motion or tendency of motion
  • (c) To increase acceleration
  • (d) To increase normal force

NEET-style Numerical Problems

  1. A 5kg block on a surface with μk=0.2 (g=9.8m/s2) is pushed by F=30N. What is the acceleration?
  • (a) 3.0m/s2
  • (b) 4.0m/s2
  • (c) 5.0m/s2
  • (d) 6.0m/s2
  1. A 1000kg car on a banked curve of radius 70m at v=21m/s (g=9.8m/s2). What is the banking angle?
  • (a) 25
  • (b) 30
  • (c) 35
  • (d) 40
  1. Masses m1=10kg (hanging) and m2=5kg on a surface with μk=0.2 (g=9.8m/s2) in an Atwood’s setup. What is the acceleration?
  • (a) 5.0m/s2
  • (b) 5.5m/s2
  • (c) 6.0m/s2
  • (d) 6.5m/s2
  1. A skydiver of mass 75kg reaches terminal velocity (g=9.8m/s2, ρ=1.2kg/m3, Cd=1, A=0.8m2). What is vt?
  • (a) 35m/s
  • (b) 40m/s
  • (c) 45m/s
  • (d) 50m/s
  1. A 4kg block on an incline at 45 with μk=0.3 (g=9.8m/s2), pulled by F=40N at 45 above the incline. What is the acceleration?
    - (a) 8.0m/s2
    - (b) 9.0m/s2
    - (c) 10.0m/s2
    - (d) 11.0m/s2

Back to Chapter

Return to Force and Motion—II Chapter