Skip to content

Gravitation Problems

This section provides 100 problems to test your understanding of gravitation, including Newton’s law of gravitation, gravitational fields and potential, Kepler’s laws, orbital motion, escape velocity, and their applications. Inspired by JEE Main, JEE Advanced, and NEET exam patterns, these problems are tailored for exam preparation, offering a mix of numerical, conceptual, and derivation-based challenges. NEET-style problems (66–100) are formatted as multiple-choice questions (MCQs) to match the exam’s objective format. Problems are organized by type to support progressive learning and build confidence in mastering gravitation, a key topic for JEE/NEET success.

Numerical Problems

  1. Two point masses m1=5kg and m2=8kg are separated by 0.4m. Calculate the gravitational force between them (G=6.67×1011Nm2/kg2).

    • (a) 4.17×108N
    • (b) 4.22×108N
    • (c) 4.27×108N
    • (d) 4.32×108N
  2. Calculate the gravitational field strength at 1500km above Earth’s surface (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 6.40m/s2
    • (b) 6.45m/s2
    • (c) 6.50m/s2
    • (d) 6.55m/s2
  3. A satellite of mass 600kg orbits Earth at 800km above the surface. Calculate the gravitational potential at that height (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 5.60×107J/kg
    • (b) 5.65×107J/kg
    • (c) 5.70×107J/kg
    • (d) 5.75×107J/kg
  4. A satellite orbits Earth at 300km above the surface. Calculate the orbital velocity (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 7650m/s
    • (b) 7700m/s
    • (c) 7750m/s
    • (d) 7800m/s
  5. Calculate the escape velocity from a planet with M=4×1023kg and R=3×106m (G=6.67×1011Nm2/kg2).

    • (a) 4.50km/s
    • (b) 4.55km/s
    • (c) 4.60km/s
    • (d) 4.65km/s
  6. A planet has a period T=3 years and semi-major axis a=9AU. Calculate T2/a3.

    • (a) 0.105
    • (b) 0.110
    • (c) 0.111
    • (d) 0.115
  7. A satellite of mass 1500kg orbits at 1000km above Earth. Calculate the total orbital energy (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 4.30×1010J
    • (b) 4.35×1010J
    • (c) 4.40×1010J
    • (d) 4.45×1010J
  8. Calculate the gravitational force between two identical spheres of mass 20kg with centers 0.3m apart (G=6.67×1011Nm2/kg2).

    • (a) 2.95×108N
    • (b) 2.96×108N
    • (c) 2.97×108N
    • (d) 2.98×108N
  9. Calculate the gravitational field at the midpoint between two masses M=10kg separated by 0.6m (G=6.67×1011Nm2/kg2).

    • (a) 0m/s2
    • (b) 1.0×109m/s2
    • (c) 2.0×109m/s2
    • (d) 3.0×109m/s2
  10. A satellite orbits at 2000km above Earth. Calculate the gravitational potential energy of a 1000kg satellite (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 5.50×1010J
    • (b) 5.55×1010J
    • (c) 5.60×1010J
    • (d) 5.65×1010J
  11. Calculate the escape velocity from the Moon (MMoon=7.342×1022kg, RMoon=1738km, G=6.67×1011Nm2/kg2).

    • (a) 2.35km/s
    • (b) 2.37km/s
    • (c) 2.39km/s
    • (d) 2.41km/s
  12. A geostationary satellite has a period T=24 hours. Calculate the orbital radius (ME=5.972×1024kg, G=6.67×1011Nm2/kg2).

    • (a) 42000km
    • (b) 42100km
    • (c) 42200km
    • (d) 42300km
  13. Two point masses m1=1kg and m2=4kg are separated by 0.2m. Calculate the gravitational force (G=6.67×1011Nm2/kg2).

    • (a) 6.65×109N
    • (b) 6.67×109N
    • (c) 6.69×109N
    • (d) 6.71×109N
  14. Calculate the gravitational field strength at 500km above Earth (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 8.40m/s2
    • (b) 8.45m/s2
    • (c) 8.50m/s2
    • (d) 8.55m/s2
  15. A satellite of mass 2000kg orbits at 1200km above Earth. Calculate the orbital velocity (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 7450m/s
    • (b) 7500m/s
    • (c) 7550m/s
    • (d) 7600m/s
  16. Calculate the escape velocity from a planet with M=1×1024kg and R=4×106m (G=6.67×1011Nm2/kg2).

    • (a) 5.75km/s
    • (b) 5.77km/s
    • (c) 5.79km/s
    • (d) 5.81km/s
  17. A planet has T=4 years and a=16AU. Calculate T2/a3.

    • (a) 0.060
    • (b) 0.062
    • (c) 0.064
    • (d) 0.066
  18. A satellite of mass 800kg orbits at 1500km above Earth. Calculate the total orbital energy (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 3.40×1010J
    • (b) 3.45×1010J
    • (c) 3.50×1010J
    • (d) 3.55×1010J
  19. Calculate the gravitational force between two masses m1=3kg and m2=6kg separated by 0.5m (G=6.67×1011Nm2/kg2).

    • (a) 4.80×109N
    • (b) 4.82×109N
    • (c) 4.80×108N
    • (d) 4.82×108N
  20. Calculate the gravitational field at 1000km above Earth (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 7.30m/s2
    • (b) 7.35m/s2
    • (c) 7.40m/s2
    • (d) 7.45m/s2
  21. A satellite of mass 1200kg orbits at 600km above Earth. Calculate the gravitational potential energy (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 7.00×1010J
    • (b) 7.05×1010J
    • (c) 7.10×1010J
    • (d) 7.15×1010J
  22. Calculate the orbital velocity of a satellite at 1800km above Earth (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 7250m/s
    • (b) 7300m/s
    • (c) 7350m/s
    • (d) 7400m/s
  23. Calculate the escape velocity from a planet with M=2×1024kg and R=5×106m (G=6.67×1011Nm2/kg2).

    • (a) 6.50km/s
    • (b) 6.52km/s
    • (c) 6.54km/s
    • (d) 6.56km/s
  24. A planet has T=5 years and a=25AU. Calculate T2/a3.

    • (a) 0.040
    • (b) 0.042
    • (c) 0.044
    • (d) 0.046
  25. A satellite of mass 1000kg orbits at 400km above Earth. Calculate the total orbital energy (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 3.10×1010J
    • (b) 3.15×1010J
    • (c) 3.20×1010J
    • (d) 3.25×1010J
  26. Calculate the gravitational force between two masses m1=2kg and m2=5kg separated by 0.1m (G=6.67×1011Nm2/kg2).

    • (a) 6.65×108N
    • (b) 6.67×108N
    • (c) 6.69×108N
    • (d) 6.71×108N
  27. Calculate the gravitational field at 2500km above Earth (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 5.20m/s2
    • (b) 5.25m/s2
    • (c) 5.30m/s2
    • (d) 5.35m/s2
  28. A satellite of mass 500kg orbits at 900km above Earth. Calculate the gravitational potential energy (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 2.80×1010J
    • (b) 2.85×1010J
    • (c) 2.90×1010J
    • (d) 2.95×1010J
  29. Calculate the orbital velocity of a satellite at 700km above Earth (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 7500m/s
    • (b) 7550m/s
    • (c) 7600m/s
    • (d) 7650m/s
  30. Calculate the escape velocity from a planet with M=5×1023kg and R=2.5×106m (G=6.67×1011Nm2/kg2).

    • (a) 5.15km/s
    • (b) 5.17km/s
    • (c) 5.19km/s
    • (d) 5.21km/s
  31. A planet has T=2 years and a=8AU. Calculate T2/a3.

    • (a) 0.060
    • (b) 0.062
    • (c) 0.064
    • (d) 0.066
  32. A satellite of mass 2000kg orbits at 1100km above Earth. Calculate the total orbital energy (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 6.00×1010J
    • (b) 6.05×1010J
    • (c) 6.10×1010J
    • (d) 6.15×1010J
  33. Calculate the gravitational force between two spheres of mass 15kg with centers 0.5m apart (G=6.67×1011Nm2/kg2).

    • (a) 6.00×109N
    • (b) 6.01×109N
    • (c) 6.02×109N
    • (d) 6.03×109N
  34. Calculate the gravitational field at 3000km above Earth (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).

    • (a) 4.80m/s2
    • (b) 4.85m/s2
    • (c) 4.90m/s2
    • (d) 4.95m/s2
  35. A rocket escapes from a planet with M=6×1023kg and R=3.5×106m. Calculate the escape velocity (G=6.67×1011Nm2/kg2).

    • (a) 5.50km/s
    • (b) 5.52km/s
    • (c) 5.54km/s
    • (d) 5.56km/s

Conceptual Problems

  1. What does Newton’s law of gravitation state?
  • (a) Force is proportional to the product of masses and inversely proportional to r
  • (b) Force is proportional to the product of masses and inversely proportional to r2
  • (c) Force is proportional to r2
  • (d) Force is independent of distance
  1. What is the gravitational field inside a uniform spherical shell?
  • (a) Zero
  • (b) Proportional to r
  • (c) Proportional to 1/r
  • (d) Proportional to 1/r2
  1. What does a negative gravitational potential energy indicate?
  • (a) Repulsive force
  • (b) Bound system
  • (c) Unbound system
  • (d) Zero energy
  1. What does Kepler’s second law imply?
  • (a) Orbits are circular
  • (b) Equal areas in equal times
  • (c) T2r3
  • (d) Velocity is constant
  1. What is the unit of gravitational potential?
  • (a) J/kg
  • (b) m/s2
  • (c) N
  • (d) J
  1. What happens to orbital velocity as the radius increases?
  • (a) Increases
  • (b) Decreases
  • (c) Remains the same
  • (d) Becomes zero
  1. What does a total orbital energy of zero indicate?
  • (a) Circular orbit
  • (b) Elliptical orbit
  • (c) Object escapes the gravitational field
  • (d) Object is at rest
  1. What is the physical significance of escape velocity?
  • (a) Speed to orbit a planet
  • (b) Speed to escape the gravitational field
  • (c) Speed to reach the surface
  • (d) Speed to enter an elliptical orbit
  1. What does Kepler’s third law relate?
  • (a) Velocity and radius
  • (b) Period and radius
  • (c) Energy and radius
  • (d) Force and radius
  1. What is the dimension of the gravitational constant G?
  • (a) [M1L3T2]
  • (b) [MLT1]
  • (c) [ML2T1]
  • (d) [LT2]
  1. What does a zero gravitational field at a point indicate?
  • (a) No mass nearby
  • (b) Fields cancel due to symmetry
  • (c) Object is at infinity
  • (d) Object is inside a mass
  1. What is the significance of GMr?
  • (a) Gravitational field
  • (b) Gravitational potential
  • (c) Orbital velocity
  • (d) Escape velocity
  1. What happens to gravitational potential as distance increases?
  • (a) Becomes more negative
  • (b) Becomes less negative
  • (c) Remains constant
  • (d) Becomes positive
  1. What does a geostationary satellite’s period equal?
  • (a) 12 hours
  • (b) 24 hours
  • (c) 1 year
  • (d) 1 month
  1. How does escape velocity depend on mass of the object escaping?
  • (a) Proportional to mass
  • (b) Inversely proportional to mass
  • (c) Independent of mass
  • (d) Proportional to square of mass

Derivation Problems

  1. Derive Newton’s law of gravitation for two point masses.

  2. Derive the gravitational field of a point mass.

  3. Derive the gravitational potential V=GMr.

  4. Derive Kepler’s third law for circular orbits.

  5. Derive the escape velocity vesc=2GMr.

  6. Derive the total energy in a circular orbit.

  7. Derive the gravitational force outside a spherical mass.

  8. Derive the orbital velocity v=GMr.

  9. Derive Kepler’s second law using angular momentum conservation.

  10. Derive the gravitational potential energy U=GMmr.

  11. Derive the gravitational field inside a spherical shell.

  12. Derive the period of a geostationary satellite.

  13. Derive the minimum energy required for escape.

  14. Derive the gravitational acceleration near Earth’s surface.

  15. Derive the gravitational field at the midpoint between two masses.


NEET-style Conceptual Problems

  1. What is the unit of gravitational field strength?
  • (a) m/s2
  • (b) J/kg
  • (c) N
  • (d) J
  1. What does a zero gravitational potential indicate?
  • (a) Point is at the surface
  • (b) Point is at infinity
  • (c) No mass is present
  • (d) Field is zero
  1. Which law describes the elliptical shape of planetary orbits?
  • (a) Kepler’s first law
  • (b) Kepler’s second law
  • (c) Kepler’s third law
  • (d) Newton’s law of gravitation
  1. What happens to total energy when a satellite moves to a higher orbit?
  • (a) Becomes more negative
  • (b) Becomes less negative
  • (c) Remains the same
  • (d) Becomes positive
  1. What is the dimension of gravitational potential?
  • (a) [L2T2]
  • (b) [MLT1]
  • (c) [ML2T1]
  • (d) [LT1]
  1. What does the inverse-square law in gravitation imply?
  • (a) Force increases with distance
  • (b) Force decreases as 1/r2
  • (c) Force decreases as 1/r
  • (d) Force is constant
  1. What is the role of gravitational force in orbital motion?
  • (a) Provides centripetal force
  • (b) Causes linear motion
  • (c) Increases angular velocity
  • (d) Reduces potential energy
  1. What happens to escape velocity as the planet’s mass increases?
  • (a) Decreases
  • (b) Increases
  • (c) Remains the same
  • (d) Becomes zero
  1. Why does a satellite in a higher orbit have a longer period?
  • (a) Kepler’s third law: T2r3
  • (b) Kepler’s second law
  • (c) Lower gravitational field
  • (d) Higher velocity
  1. What is the unit of the gravitational constant G?
  • (a) Nm2/kg2
  • (b) m/s2
  • (c) J/kg
  • (d) J
  1. What does a constant T2a3 indicate?
  • (a) Kepler’s first law
  • (b) Kepler’s second law
  • (c) Kepler’s third law
  • (d) Newton’s law
  1. Which type of orbit does Kepler’s first law describe?
  • (a) Circular
  • (b) Elliptical
  • (c) Parabolic
  • (d) Hyperbolic
  1. What is the direction of the gravitational field?
  • (a) Away from the mass
  • (b) Toward the mass
  • (c) Perpendicular to the mass
  • (d) Along the velocity
  1. What does a pseudo-force do in a rotating frame for orbits?
  • (a) Maintains circular motion
  • (b) Affects gravitational calculations
  • (c) Provides centripetal force
  • (d) Reduces friction
  1. What is the dimension of orbital velocity?
  • (a) [LT1]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. What is the role of angular momentum in Kepler’s second law?
  • (a) Increases velocity
  • (b) Ensures equal areas in equal times
  • (c) Reduces potential energy
  • (d) Increases orbital radius
  1. What happens to gravitational field strength inside a spherical shell?
  • (a) Increases with radius
  • (b) Decreases with radius
  • (c) Remains zero
  • (d) Becomes infinite
  1. Why does escape velocity not depend on the object’s mass?
  • (a) Mass cancels out in the equation
  • (b) Mass increases with velocity
  • (c) Mass affects potential energy
  • (d) Mass affects field strength
  1. What is the significance of GMr?
  • (a) Escape velocity
  • (b) Orbital velocity
  • (c) Gravitational field
  • (d) Gravitational potential
  1. What is the unit of total orbital energy?
  • (a) J
  • (b) m/s2
  • (c) J/kg
  • (d) N
  1. What does a zero total energy indicate in orbital mechanics?
  • (a) Circular orbit
  • (b) Elliptical orbit
  • (c) Object escapes
  • (d) Object is at rest
  1. What is the physical significance of 4π2r3GM?
  • (a) Gravitational field
  • (b) Gravitational potential
  • (c) Orbital period squared
  • (d) Escape velocity
  1. Why does a geostationary satellite stay above the same point?
  • (a) High velocity
  • (b) Period matches Earth’s rotation
  • (c) Low gravitational field
  • (d) High potential energy
  1. What is the dimension of escape velocity?
  • (a) [LT1]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. How does gravitational potential affect a rocket’s trajectory?
  • (a) Increases kinetic energy
  • (b) Determines potential energy
  • (c) Reduces velocity
  • (d) Increases field strength
  1. What is the role of escape velocity in rocket launches?
  • (a) Determines orbital radius
  • (b) Ensures the rocket leaves the gravitational field
  • (c) Increases period
  • (d) Reduces energy
  1. What does a negative total energy in an orbit indicate?
  • (a) Object escapes
  • (b) Bound orbit
  • (c) Parabolic trajectory
  • (d) Hyperbolic trajectory
  1. What is the physical significance of GMm2r?
  • (a) Total energy in a circular orbit
  • (b) Potential energy
  • (c) Kinetic energy
  • (d) Gravitational force
  1. What is the dimension of gravitational field strength?
  • (a) [LT2]
  • (b) [MLT1]
  • (c) [LT1]
  • (d) [ML2T1]
  1. Why does gravitational field strength decrease with distance?
  • (a) Proportional to r
  • (b) Proportional to 1/r
  • (c) Proportional to 1/r2
  • (d) Proportional to r2

NEET-style Numerical Problems

  1. Calculate the gravitational force between two masses m1=4kg and m2=7kg separated by 0.3m (G=6.67×1011Nm2/kg2).
  • (a) 2.07×108N
  • (b) 2.08×108N
  • (c) 2.09×108N
  • (d) 2.10×108N
  1. Calculate the gravitational field at 2000km above Earth (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2).
  • (a) 5.65m/s2
  • (b) 5.68m/s2
  • (c) 5.71m/s2
  • (d) 5.74m/s2
  1. A satellite orbits at 500km above Earth. What is the orbital velocity (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2)?
  • (a) 7550m/s
  • (b) 7600m/s
  • (c) 7650m/s
  • (d) 7700m/s
  1. Calculate the escape velocity from a planet with M=8×1023kg and R=4×106m (G=6.67×1011Nm2/kg2).
  • (a) 5.80km/s
  • (b) 5.82km/s
  • (c) 5.84km/s
  • (d) 5.86km/s
  1. A satellite of mass 1000kg orbits at 800km above Earth. What is the total orbital energy (ME=5.972×1024kg, RE=6371km, G=6.67×1011Nm2/kg2)?
    - (a) 2.80×1010J
    - (b) 2.85×1010J
    - (c) 2.90×1010J
    - (d) 2.95×1010J

Back to Chapter

Return to Gravitation Chapter