Skip to content

Oscillations Problems

This section provides 100 problems to test your understanding of oscillatory motion, including simple harmonic motion (SHM), energy in oscillatory systems, damped and forced oscillations, and resonance. Inspired by JEE Main, JEE Advanced, and NEET exam patterns, these problems are tailored for exam preparation, offering a mix of numerical, conceptual, and derivation-based challenges. NEET-style problems (66–100) are formatted as multiple-choice questions (MCQs) to match the exam’s objective format. Problems are organized by type to support progressive learning and build confidence in mastering oscillations, a key topic for JEE/NEET success.

Numerical Problems

  1. A spring-mass system has m=0.8kg and k=320N/m. Calculate the period of oscillation.

    • (a) 0.30s
    • (b) 0.31s
    • (c) 0.32s
    • (d) 0.33s
  2. A simple pendulum of length 1.2m oscillates on Earth (g=9.8m/s2). Calculate the frequency.

    • (a) 0.45Hz
    • (b) 0.46Hz
    • (c) 0.47Hz
    • (d) 0.48Hz
  3. A mass of 0.5kg on a spring (k=200N/m) has an amplitude A=0.06m. Calculate the maximum velocity.

    • (a) 1.15m/s
    • (b) 1.20m/s
    • (c) 1.25m/s
    • (d) 1.30m/s
  4. A spring-mass system (m=0.3kg, k=150N/m, A=0.08m) oscillates. Calculate the total energy.

    • (a) 0.45J
    • (b) 0.46J
    • (c) 0.47J
    • (d) 0.48J
  5. A pendulum (m=0.2kg, L=0.8m, θmax=0.1rad, g=9.8m/s2) oscillates. Calculate the maximum kinetic energy.

    • (a) 0.015J
    • (b) 0.016J
    • (c) 0.017J
    • (d) 0.018J
  6. A mass on a spring (k=100N/m, m=0.4kg, A=0.05m) oscillates. Calculate the velocity at x=0.03m.

    • (a) 0.78m/s
    • (b) 0.79m/s
    • (c) 0.80m/s
    • (d) 0.81m/s
  7. A damped oscillator has m=0.2kg, k=80N/m, and b=0.4kg/s. Calculate the damped frequency.

    • (a) 19.95rad/s
    • (b) 19.96rad/s
    • (c) 19.97rad/s
    • (d) 19.98rad/s
  8. A forced oscillator (m=0.6kg, k=240N/m, b=0.3kg/s, F0=2N) is at resonance. Calculate the maximum amplitude.

    • (a) 0.105m
    • (b) 0.110m
    • (c) 0.115m
    • (d) 0.120m
  9. A spring-mass system has m=1kg and k=400N/m. Calculate the frequency of oscillation.

    • (a) 3.15Hz
    • (b) 3.18Hz
    • (c) 3.21Hz
    • (d) 3.24Hz
  10. A simple pendulum of length 0.5m oscillates on Earth (g=9.8m/s2). Calculate the period.

    • (a) 1.40s
    • (b) 1.41s
    • (c) 1.42s
    • (d) 1.43s
  11. A mass of 0.1kg on a spring (k=50N/m) has A=0.04m. Calculate the maximum acceleration.

    • (a) 19.5m/s2
    • (b) 20.0m/s2
    • (c) 20.5m/s2
    • (d) 21.0m/s2
  12. A spring-mass system (m=0.25kg, k=100N/m, A=0.03m) oscillates. Calculate the potential energy at x=0.02m.

    • (a) 0.020J
    • (b) 0.021J
    • (c) 0.022J
    • (d) 0.023J
  13. A pendulum (m=0.15kg, L=1m, θmax=0.15rad, g=9.8m/s2) oscillates. Calculate the maximum potential energy.

    • (a) 0.016J
    • (b) 0.017J
    • (c) 0.018J
    • (d) 0.019J
  14. A mass on a spring (k=300N/m, m=0.6kg, A=0.07m) oscillates. Calculate the kinetic energy at x=0.04m.

    • (a) 0.52J
    • (b) 0.53J
    • (c) 0.54J
    • (d) 0.55J
  15. A damped oscillator has m=0.4kg, k=160N/m, and b=0.8kg/s. Calculate the time for the amplitude to reduce to 1/e of its initial value.

    • (a) 0.48s
    • (b) 0.49s
    • (c) 0.50s
    • (d) 0.51s
  16. A system (m=0.2kg, k=80N/m, b=0.5kg/s, F0=1N) is at resonance. Calculate the maximum energy.

    • (a) 0.040J
    • (b) 0.045J
    • (c) 0.050J
    • (d) 0.055J
  17. A spring-mass system has m=0.9kg and k=360N/m. Calculate the period of oscillation.

    • (a) 0.30s
    • (b) 0.31s
    • (c) 0.32s
    • (d) 0.33s
  18. A simple pendulum of length 2m oscillates on Earth (g=9.8m/s2). Calculate the frequency.

    • (a) 0.34Hz
    • (b) 0.35Hz
    • (c) 0.36Hz
    • (d) 0.37Hz
  19. A mass of 0.3kg on a spring (k=120N/m) has A=0.05m. Calculate the maximum velocity.

    • (a) 0.95m/s
    • (b) 1.00m/s
    • (c) 1.05m/s
    • (d) 1.10m/s
  20. A spring-mass system (m=0.7kg, k=280N/m, A=0.04m) oscillates. Calculate the total energy.

    • (a) 0.22J
    • (b) 0.23J
    • (c) 0.24J
    • (d) 0.25J
  21. A pendulum (m=0.1kg, L=0.6m, θmax=0.2rad, g=9.8m/s2) oscillates. Calculate the maximum kinetic energy.

    • (a) 0.011J
    • (b) 0.012J
    • (c) 0.013J
    • (d) 0.014J
  22. A mass on a spring (k=150N/m, m=0.3kg, A=0.06m) oscillates. Calculate the velocity at x=0.02m.

    • (a) 1.32m/s
    • (b) 1.33m/s
    • (c) 1.34m/s
    • (d) 1.35m/s
  23. A damped oscillator has m=0.5kg, k=200N/m, and b=1.0kg/s. Calculate the damped frequency.

    • (a) 19.90rad/s
    • (b) 19.92rad/s
    • (c) 19.94rad/s
    • (d) 19.96rad/s
  24. A forced oscillator (m=0.4kg, k=160N/m, b=0.2kg/s, F0=1.5N) is at resonance. Calculate the maximum amplitude.

    • (a) 0.185m
    • (b) 0.190m
    • (c) 0.195m
    • (d) 0.200m
  25. A spring-mass system has m=0.2kg and k=80N/m. Calculate the frequency.

    • (a) 3.15Hz
    • (b) 3.18Hz
    • (c) 3.21Hz
    • (d) 3.24Hz
  26. A simple pendulum of length 0.8m oscillates on Earth (g=9.8m/s2). Calculate the period.

    • (a) 1.78s
    • (b) 1.79s
    • (c) 1.80s
    • (d) 1.81s
  27. A mass of 0.4kg on a spring (k=160N/m) has A=0.03m. Calculate the maximum acceleration.

    • (a) 11.5m/s2
    • (b) 12.0m/s2
    • (c) 12.5m/s2
    • (d) 13.0m/s2
  28. A spring-mass system (m=0.6kg, k=240N/m, A=0.05m) oscillates. Calculate the potential energy at x=0.03m.

    • (a) 0.100J
    • (b) 0.105J
    • (c) 0.110J
    • (d) 0.115J
  29. A pendulum (m=0.05kg, L=0.4m, θmax=0.1rad, g=9.8m/s2) oscillates. Calculate the maximum potential energy.

    • (a) 0.0020J
    • (b) 0.0021J
    • (c) 0.0022J
    • (d) 0.0023J
  30. A mass on a spring (k=200N/m, m=0.5kg, A=0.04m) oscillates. Calculate the kinetic energy at x=0.02m.

    • (a) 0.060J
    • (b) 0.065J
    • (c) 0.070J
    • (d) 0.075J
  31. A damped oscillator has m=0.3kg, k=120N/m, and b=0.6kg/s. Calculate the time for the amplitude to reduce to 1/e of its initial value.

    • (a) 0.48s
    • (b) 0.49s
    • (c) 0.50s
    • (d) 0.51s
  32. A system (m=0.1kg, k=40N/m, b=0.2kg/s) has a Q-factor of 10. Calculate b.

    • (a) 0.15kg/s
    • (b) 0.20kg/s
    • (c) 0.25kg/s
    • (d) 0.30kg/s
  33. A rocket component (m=2kg, k=800N/m, b=4kg/s) vibrates. Calculate the resonance frequency.

    • (a) 3.15Hz
    • (b) 3.18Hz
    • (c) 3.21Hz
    • (d) 3.24Hz
  34. A spring-mass system (m=0.8kg, k=320N/m, A=0.02m) oscillates. Calculate the total energy.

    • (a) 0.060J
    • (b) 0.062J
    • (c) 0.064J
    • (d) 0.066J
  35. A forced oscillator (m=0.5kg, k=200N/m, b=0.5kg/s, F0=2N) is at resonance. Calculate the maximum energy.

    • (a) 0.080J
    • (b) 0.085J
    • (c) 0.090J
    • (d) 0.095J

Conceptual Problems

  1. What condition defines simple harmonic motion (SHM)?
  • (a) Acceleration is constant
  • (b) Acceleration is proportional to velocity
  • (c) Acceleration is proportional to displacement and opposite in direction
  • (d) Acceleration is independent of displacement
  1. What does the total energy in SHM depend on?
  • (a) Position
  • (b) Velocity
  • (c) Amplitude and spring constant
  • (d) Phase constant
  1. What happens to the frequency of a simple pendulum if its length is doubled?
  • (a) Increases by a factor of 2
  • (b) Decreases by a factor of 2
  • (c) Decreases by a factor of 2
  • (d) Remains the same
  1. What does damping do to an oscillatory system?
  • (a) Increases amplitude
  • (b) Decreases amplitude over time
  • (c) Increases frequency
  • (d) Decreases total energy to zero instantly
  1. What is the unit of angular frequency in SHM?
  • (a) Hz
  • (b) rad/s
  • (c) s
  • (d) J
  1. What happens to the velocity in SHM at the extreme positions?
  • (a) Maximum
  • (b) Zero
  • (c) Constant
  • (d) Minimum but non-zero
  1. What does a high Q-factor indicate in a forced oscillator?
  • (a) High damping
  • (b) Low damping, sharp resonance
  • (c) Low amplitude
  • (d) High frequency
  1. What is the physical significance of ω2x in SHM?
  • (a) Velocity
  • (b) Acceleration
  • (c) Potential energy
  • (d) Kinetic energy
  1. What does resonance in a forced oscillator imply?
  • (a) Minimum amplitude
  • (b) Maximum amplitude at driving frequency equal to natural frequency
  • (c) No oscillation
  • (d) Constant amplitude
  1. What is the dimension of the spring constant k?
  • (a) [MT2]
  • (b) [MLT1]
  • (c) [ML2T1]
  • (d) [LT2]
  1. What does a zero kinetic energy in SHM indicate?
  • (a) System is at equilibrium
  • (b) System is at the extreme position
  • (c) System is damped
  • (d) System is at resonance
  1. What is the significance of Aω in SHM?
  • (a) Maximum acceleration
  • (b) Maximum velocity
  • (c) Total energy
  • (d) Period
  1. What happens to the period of a spring-mass system if the mass is quadrupled?
  • (a) Doubles
  • (b) Halves
  • (c) Quadruples
  • (d) Remains the same
  1. What does critical damping imply?
  • (a) System oscillates with decreasing amplitude
  • (b) System returns to equilibrium without oscillation
  • (c) System oscillates with constant amplitude
  • (d) System does not return to equilibrium
  1. How does the amplitude of a damped oscillator behave over time?
  • (a) Increases exponentially
  • (b) Decreases exponentially
  • (c) Remains constant
  • (d) Increases linearly

Derivation Problems

  1. Derive the equation of motion for SHM a=ω2x.

  2. Derive the period of a spring-mass system T=2πmk.

  3. Derive the total energy in SHM E=12kA2.

  4. Derive the velocity in SHM as a function of position v=ωA2x2.

  5. Derive the period of a simple pendulum T=2πLg for small angles.

  6. Derive the solution to damped SHM x(t)=Aeγtcos(ωt+ϕ).

  7. Derive the maximum amplitude at resonance for a forced oscillator.

  8. Derive the Q-factor Q=ω02γ for a damped oscillator.

  9. Derive the velocity and acceleration in SHM from x(t)=Acos(ωt+ϕ).

  10. Derive the energy oscillation in SHM showing K+U=constant.

  11. Derive the damped frequency ω=ω02γ2.

  12. Derive the maximum kinetic energy of a pendulum using small-angle approximation.

  13. Derive the energy decay in a damped oscillator E(t)e2γt.

  14. Derive the resonance frequency for a forced oscillator.

  15. Derive the maximum acceleration in SHM amax=Aω2.


NEET-style Conceptual Problems

  1. What is the unit of frequency in SI units?
  • (a) Hz
  • (b) rad/s
  • (c) J
  • (d) s
  1. What does a zero velocity in SHM indicate?
  • (a) System is at equilibrium
  • (b) System is at the extreme position
  • (c) System is damped
  • (d) System is at resonance
  1. Which condition results in resonance in a forced oscillator?
  • (a) Driving frequency equals natural frequency
  • (b) Driving frequency is zero
  • (c) Damping is zero
  • (d) Amplitude is zero
  1. What happens to the total energy in SHM if amplitude doubles?
  • (a) Doubles
  • (b) Quadruples
  • (c) Halves
  • (d) Remains the same
  1. What is the dimension of angular frequency?
  • (a) [T1]
  • (b) [MLT1]
  • (c) [ML2T1]
  • (d) [LT1]
  1. What does the phase constant ϕ in SHM determine?
  • (a) Amplitude
  • (b) Frequency
  • (c) Initial position and velocity
  • (d) Total energy
  1. What is the role of the restoring force in SHM?
  • (a) Increases amplitude
  • (b) Brings the system back to equilibrium
  • (c) Increases frequency
  • (d) Reduces damping
  1. What happens to the period of a pendulum if g is reduced by a factor of 4?
  • (a) Doubles
  • (b) Halves
  • (c) Quadruples
  • (d) Remains the same
  1. Why does damping reduce the amplitude of oscillation?
  • (a) Increases frequency
  • (b) Dissipates energy as heat
  • (c) Increases potential energy
  • (d) Reduces spring constant
  1. What is the unit of the damping coefficient b?
  • (a) kg/s
  • (b) N/m
  • (c) Pa
  • (d) J
  1. What does a constant total energy in SHM imply?
  • (a) No damping
  • (b) System is at resonance
  • (c) System is overdamped
  • (d) System is critically damped
  1. Which type of motion does a spring-mass system exhibit for small displacements?
  • (a) Circular
  • (b) Simple harmonic
  • (c) Parabolic
  • (d) Linear
  1. What is the direction of the acceleration in SHM?
  • (a) Always toward the equilibrium position
  • (b) Away from the equilibrium position
  • (c) Along the velocity
  • (d) Perpendicular to displacement
  1. What does a pseudo-force do in a non-inertial frame for oscillations?
  • (a) Maintains SHM
  • (b) Affects the effective acceleration
  • (c) Provides damping
  • (d) Reduces amplitude
  1. What is the dimension of total energy in SHM?
  • (a) [ML2T2]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. What is the role of resonance in a rocket engine?
  • (a) Increases efficiency
  • (b) Can cause destructive vibrations if not managed
  • (c) Reduces amplitude
  • (d) Increases damping
  1. What happens to kinetic energy at the equilibrium position in SHM?
  • (a) Zero
  • (b) Maximum
  • (c) Constant
  • (d) Minimum but non-zero
  1. Why does a simple pendulum exhibit SHM for small angles?
  • (a) sinθθ, making the restoring force linear
  • (b) Large angles increase frequency
  • (c) Damping is negligible
  • (d) Gravity is constant
  1. What is the significance of 12kA2 in SHM?
  • (a) Maximum velocity
  • (b) Maximum acceleration
  • (c) Total mechanical energy
  • (d) Damped frequency
  1. What is the unit of the Q-factor?
  • (a) Dimensionless
  • (b) Hz
  • (c) rad/s
  • (d) J
  1. What does a zero acceleration in SHM indicate?
  • (a) System is at the extreme position
  • (b) System is at equilibrium
  • (c) System is damped
  • (d) System is at resonance
  1. What is the physical significance of km?
  • (a) Period
  • (b) Angular frequency
  • (c) Amplitude
  • (d) Damping coefficient
  1. Why does a high damping coefficient reduce oscillation amplitude quickly?
  • (a) Increases frequency
  • (b) Increases energy loss per cycle
  • (c) Reduces spring constant
  • (d) Increases potential energy
  1. What is the dimension of velocity in SHM?
  • (a) [LT1]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. How does resonance affect a rocket structure during launch?
  • (a) Increases stability
  • (b) Can amplify vibrations, risking structural failure
  • (c) Reduces frequency
  • (d) Increases damping
  1. What is the role of the spring constant in SHM?
  • (a) Determines damping
  • (b) Determines the restoring force per unit displacement
  • (c) Reduces amplitude
  • (d) Increases phase constant
  1. What does a negative acceleration in SHM indicate?
  • (a) Motion toward the equilibrium position
  • (b) Motion away from the equilibrium position
  • (c) System is overdamped
  • (d) System is at resonance
  1. What is the physical significance of eγt in damped oscillations?
  • (a) Frequency decay
  • (b) Amplitude decay factor
  • (c) Energy increase
  • (d) Phase constant
  1. What is the dimension of acceleration in SHM?
  • (a) [LT2]
  • (b) [MLT1]
  • (c) [LT1]
  • (d) [ML2T1]
  1. Why does the frequency of a spring-mass system not depend on amplitude?
  • (a) SHM is linear
  • (b) Damping is present
  • (c) Energy is constant
  • (d) Gravity affects it

NEET-style Numerical Problems

  1. A spring-mass system has m=0.4kg and k=160N/m. What is the period of oscillation?
  • (a) 0.31s
  • (b) 0.32s
  • (c) 0.33s
  • (d) 0.34s
  1. A simple pendulum of length 1.5m oscillates on Earth (g=9.8m/s2). What is the frequency?
  • (a) 0.40Hz
  • (b) 0.41Hz
  • (c) 0.42Hz
  • (d) 0.43Hz
  1. A mass of 0.2kg on a spring (k=80N/m) has A=0.05m. What is the maximum velocity?
  • (a) 0.95m/s
  • (b) 1.00m/s
  • (c) 1.05m/s
  • (d) 1.10m/s
  1. A damped oscillator has m=0.1kg, k=40N/m, and b=0.2kg/s. What is the damped frequency?
  • (a) 19.95rad/s
  • (b) 19.96rad/s
  • (c) 19.97rad/s
  • (d) 19.98rad/s
  1. A forced oscillator (m=0.3kg, k=120N/m, b=0.3kg/s, F0=1.2N) is at resonance. What is the maximum amplitude?
    - (a) 0.095m
    - (b) 0.100m
    - (c) 0.105m
    - (d) 0.110m

Back to Chapter

Return to Oscillations Chapter