Skip to content

Waves—II Problems

This section provides 100 problems to test your understanding of advanced wave phenomena, including sound waves, the Doppler effect, wave intensity, and shock waves. Inspired by JEE Main, JEE Advanced, and NEET exam patterns, these problems are tailored for exam preparation, offering a mix of numerical, conceptual, and derivation-based challenges. NEET-style problems (66–100) are formatted as multiple-choice questions (MCQs) to match the exam’s objective format. Problems are organized by type to support progressive learning and build confidence in mastering wave mechanics, a key topic for JEE/NEET success.

Numerical Problems

  1. Calculate the speed of sound in air at 27°C (γ=1.4, R=8.31J/mol·K, M=0.029kg/mol).

    • (a) 346m/s
    • (b) 347m/s
    • (c) 348m/s
    • (d) 349m/s
  2. A sound wave has displacement ξ=0.002sin(3πx600πt) (in SI units). Calculate the maximum particle velocity.

    • (a) 3.75m/s
    • (b) 3.76m/s
    • (c) 3.77m/s
    • (d) 3.78m/s
  3. A sound wave in water (B=2.2×109Pa, ρ=1000kg/m3) propagates. Calculate the speed of sound.

    • (a) 1470m/s
    • (b) 1480m/s
    • (c) 1490m/s
    • (d) 1500m/s
  4. A sound wave with k=1.5rad/m, p0=0.3Pa travels in air (B=1.4×105Pa). Calculate the displacement amplitude.

    • (a) 1.42×106m
    • (b) 1.43×106m
    • (c) 1.44×106m
    • (d) 1.45×106m
  5. A car moves at 25m/s toward a stationary observer, emitting a horn at 400Hz (v=340m/s). Calculate the observed frequency.

    • (a) 428Hz
    • (b) 429Hz
    • (c) 430Hz
    • (d) 431Hz
  6. An observer moves at 15m/s toward a stationary source emitting 800Hz (v=340m/s). Calculate the observed frequency.

    • (a) 834Hz
    • (b) 835Hz
    • (c) 836Hz
    • (d) 837Hz
  7. A rocket moves at 40m/s away from an observer, emitting 500Hz (v=340m/s). Calculate the observed frequency.

    • (a) 459Hz
    • (b) 460Hz
    • (c) 461Hz
    • (d) 462Hz
  8. A source and observer move toward each other at 20m/s each, with the source emitting 600Hz (v=340m/s). Calculate the observed frequency.

    • (a) 669Hz
    • (b) 670Hz
    • (c) 671Hz
    • (d) 672Hz
  9. A sound wave has p0=0.4Pa in air (ρ=1.2kg/m3, v=340m/s). Calculate the intensity.

    • (a) 9.78×105W/m2
    • (b) 9.79×105W/m2
    • (c) 9.80×105W/m2
    • (d) 9.81×105W/m2
  10. A point source emits P=50W at r=10m. Calculate the intensity.

    • (a) 0.039W/m2
    • (b) 0.040W/m2
    • (c) 0.041W/m2
    • (d) 0.042W/m2
  11. A sound intensity is I=104W/m2. Calculate the intensity level in dB (I0=1012W/m2).

    • (a) 79dB
    • (b) 80dB
    • (c) 81dB
    • (d) 82dB
  12. A rocket launch produces I=104W/m2 at r=30m. Calculate I at r=60m.

    • (a) 2.4×103W/m2
    • (b) 2.5×103W/m2
    • (c) 2.6×103W/m2
    • (d) 2.7×103W/m2
  13. A jet flies at 510m/s (vs=340m/s). Calculate the Mach number and cone angle.

    • (a) M=1.5, θ41.8
    • (b) M=1.5, θ42.0
    • (c) M=1.6, θ41.8
    • (d) M=1.6, θ42.0
  14. A rocket at M=2.5 (vs=340m/s) produces a shock wave. Calculate the speed and cone angle.

    • (a) v=850m/s, θ23.6
    • (b) v=850m/s, θ23.7
    • (c) v=860m/s, θ23.6
    • (d) v=860m/s, θ23.7
  15. A shock wave with M=2, γ=1.4 occurs. Estimate the pressure ratio across the shock.

    • (a) 4.65
    • (b) 4.66
    • (c) 4.67
    • (d) 4.68
  16. A rocket launch at v=680m/s (vs=340m/s) produces a shock wave. Calculate M and θ.

    • (a) M=2, θ29.9
    • (b) M=2, θ30.0
    • (c) M=2.1, θ29.9
    • (d) M=2.1, θ30.0
  17. Calculate the speed of sound in helium at 0°C (γ=1.67, R=8.31J/mol·K, M=0.004kg/mol).

    • (a) 970m/s
    • (b) 971m/s
    • (c) 972m/s
    • (d) 973m/s
  18. A sound wave has ξ=0.003sin(4πx800πt) (in SI units). Calculate the maximum particle velocity.

    • (a) 7.53m/s
    • (b) 7.54m/s
    • (c) 7.55m/s
    • (d) 7.56m/s
  19. A sound wave in steel (Y=2×1011Pa, ρ=7800kg/m3) propagates. Calculate the speed.

    • (a) 5050m/s
    • (b) 5060m/s
    • (c) 5070m/s
    • (d) 5080m/s
  20. A sound wave with k=2rad/m, p0=0.6Pa travels in air (B=1.4×105Pa). Calculate the displacement amplitude.

    • (a) 2.14×106m
    • (b) 2.15×106m
    • (c) 2.16×106m
    • (d) 2.17×106m
  21. A train moves at 30m/s away from a stationary observer, emitting 1000Hz (v=340m/s). Calculate the observed frequency.

    • (a) 914Hz
    • (b) 915Hz
    • (c) 916Hz
    • (d) 917Hz
  22. An observer moves at 10m/s away from a stationary source emitting 1200Hz (v=340m/s). Calculate the observed frequency.

    • (a) 1164Hz
    • (b) 1165Hz
    • (c) 1166Hz
    • (d) 1167Hz
  23. A source moves at 50m/s toward an observer moving at 20m/s toward the source, emitting 700Hz (v=340m/s). Calculate f.

    • (a) 790Hz
    • (b) 791Hz
    • (c) 792Hz
    • (d) 793Hz
  24. A source and observer move away from each other at 15m/s each, with the source emitting 900Hz (v=340m/s). Calculate f.

    • (a) 819Hz
    • (b) 820Hz
    • (c) 821Hz
    • (d) 822Hz
  25. A sound wave has p0=0.1Pa in air (ρ=1.2kg/m3, v=340m/s). Calculate the intensity.

    • (a) 1.22×105W/m2
    • (b) 1.23×105W/m2
    • (c) 1.24×105W/m2
    • (d) 1.25×105W/m2
  26. A point source emits P=200W at r=8m. Calculate the intensity.

    • (a) 0.248W/m2
    • (b) 0.249W/m2
    • (c) 0.250W/m2
    • (d) 0.251W/m2
  27. A sound intensity is I=102W/m2. Calculate the intensity level in dB (I0=1012W/m2).

    • (a) 99dB
    • (b) 100dB
    • (c) 101dB
    • (d) 102dB
  28. A rocket launch produces I=103W/m2 at r=50m. Calculate I at r=100m.

    • (a) 249W/m2
    • (b) 250W/m2
    • (c) 251W/m2
    • (d) 252W/m2
  29. A jet flies at 850m/s (vs=340m/s). Calculate the Mach number and cone angle.

    • (a) M=2.5, θ23.6
    • (b) M=2.5, θ23.7
    • (c) M=2.6, θ23.6
    • (d) M=2.6, θ23.7
  30. A rocket at M=1.8 (vs=340m/s) produces a shock wave. Calculate the speed and cone angle.

    • (a) v=610m/s, θ33.7
    • (b) v=610m/s, θ33.8
    • (c) v=612m/s, θ33.7
    • (d) v=612m/s, θ33.8
  31. A shock wave with M=3, γ=1.4 occurs. Estimate the pressure ratio across the shock.

    • (a) 10.48
    • (b) 10.49
    • (c) 10.50
    • (d) 10.51
  32. A rocket launch at v=1020m/s (vs=340m/s) produces a shock wave. Calculate M and θ.

    • (a) M=3, θ19.5
    • (b) M=3, θ19.6
    • (c) M=3.1, θ19.5
    • (d) M=3.1, θ19.6
  33. A sound wave in air at 15°C (γ=1.4, R=8.31J/mol·K, M=0.029kg/mol) propagates. Calculate the speed.

    • (a) 339m/s
    • (b) 340m/s
    • (c) 341m/s
    • (d) 342m/s
  34. A sound wave with p0=0.5Pa in air (ρ=1.2kg/m3, v=340m/s) propagates. Calculate the intensity.

    • (a) 3.06×104W/m2
    • (b) 3.07×104W/m2
    • (c) 3.08×104W/m2
    • (d) 3.09×104W/m2
  35. A jet at M=2 (vs=340m/s) produces a shock wave. Calculate the speed and cone angle.

    • (a) v=680m/s, θ29.9
    • (b) v=680m/s, θ30.0
    • (c) v=690m/s, θ29.9
    • (d) v=690m/s, θ30.0

Conceptual Problems

  1. What type of wave is a sound wave?
  • (a) Transverse
  • (b) Longitudinal
  • (c) Electromagnetic
  • (d) Standing
  1. What does the speed of sound in a gas depend on?
  • (a) Frequency
  • (b) Amplitude
  • (c) Temperature, pressure, and density
  • (d) Wavelength
  1. What does the Doppler effect describe?
  • (a) Change in wave speed
  • (b) Change in frequency due to relative motion
  • (c) Change in amplitude
  • (d) Change in wavelength only
  1. What happens to the observed frequency when a source moves toward a stationary observer?
  • (a) Decreases
  • (b) Increases
  • (c) Remains the same
  • (d) Becomes zero
  1. What is the unit of intensity in SI units?
  • (a) W/m2
  • (b) Pa
  • (c) dB
  • (d) m/s
  1. What happens to sound intensity with distance from a point source?
  • (a) Increases as r2
  • (b) Decreases as 1/r2
  • (c) Remains constant
  • (d) Decreases as 1/r
  1. What does a Mach number greater than 1 indicate?
  • (a) Subsonic speed
  • (b) Supersonic speed
  • (c) Sonic speed
  • (d) No wave propagation
  1. What is the physical significance of p022ρv?
  • (a) Wave speed
  • (b) Intensity of a sound wave
  • (c) Frequency
  • (d) Doppler shift
  1. What does a sonic boom result from?
  • (a) Subsonic motion
  • (b) Supersonic motion creating a shock wave
  • (c) Interference of waves
  • (d) Standing wave formation
  1. What is the dimension of intensity?
  • (a) [MT3]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. What does a zero Doppler shift indicate?
  • (a) No relative motion between source and observer
  • (b) Source moving toward observer
  • (c) Observer moving toward source
  • (d) Supersonic speed
  1. What is the significance of sinθ=1M in shock waves?
  • (a) Wave speed
  • (b) Mach cone angle
  • (c) Intensity
  • (d) Frequency
  1. What happens to the speed of sound if temperature doubles?
  • (a) Increases by a factor of 2
  • (b) Doubles
  • (c) Halves
  • (d) Remains the same
  1. What does a 10 dB increase in sound level indicate?
  • (a) Intensity doubles
  • (b) Intensity increases by a factor of 10
  • (c) Intensity decreases by a factor of 10
  • (d) No change in intensity
  1. How does the pressure amplitude change with distance from a point source?
  • (a) Decreases as 1/r
  • (b) Decreases as 1/r2
  • (c) Increases as r
  • (d) Remains constant

Derivation Problems

  1. Derive the speed of sound in a gas v=γPρ.

  2. Derive the pressure-displacement relationship for a sound wave p=Bξx.

  3. Derive the Doppler effect formula for sound f=f(v+vovvs).

  4. Derive the intensity of a sound wave I=p022ρv.

  5. Derive the inverse square law for intensity I=P4πr2.

  6. Derive the decibel scale formula β=10log10(II0).

  7. Derive the Mach cone angle sinθ=1M.

  8. Derive the speed of sound dependence on temperature vT.

  9. Derive the particle velocity for a sound wave vparticle=ξt.

  10. Derive the pressure ratio across a shock wave P2P12γM2γ+1.

  11. Derive the frequency shift for a source moving toward a stationary observer.

  12. Derive the amplitude dependence on distance A1r for a point source.

  13. Derive the speed of sound in a solid v=Yρ.

  14. Derive the energy dissipation relation for a shock wave (entropy increase).

  15. Derive the intensity level difference for a 10-fold intensity increase.


NEET-style Conceptual Problems

  1. What is the unit of sound wave speed in SI units?
  • (a) m/s
  • (b) Hz
  • (c) W/m2
  • (d) Pa
  1. What does a negative Doppler shift indicate?
  • (a) Source moving toward observer
  • (b) Source moving away from observer
  • (c) No relative motion
  • (d) Supersonic speed
  1. Which phenomenon causes a sonic boom?
  • (a) Subsonic motion
  • (b) Supersonic motion
  • (c) Interference
  • (d) Standing waves
  1. What happens to sound intensity if distance doubles?
  • (a) Increases by a factor of 4
  • (b) Decreases by a factor of 4
  • (c) Remains the same
  • (d) Decreases by a factor of 2
  1. What is the dimension of pressure amplitude?
  • (a) [ML1T2]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. What does the adiabatic index γ represent in sound speed?
  • (a) Density of the medium
  • (b) Elasticity of the medium
  • (c) Ratio of specific heats
  • (d) Frequency of the wave
  1. What is the role of relative motion in the Doppler effect?
  • (a) Changes wave speed
  • (b) Changes observed frequency
  • (c) Changes amplitude
  • (d) Changes wavelength only
  1. What happens to the Mach cone angle as Mach number increases?
  • (a) Increases
  • (b) Decreases
  • (c) Remains the same
  • (d) Becomes zero
  1. Why does sound intensity decrease with distance?
  • (a) Due to interference
  • (b) Due to the inverse square law
  • (c) Due to Doppler effect
  • (d) Due to frequency change
  1. What is the unit of intensity level in the decibel scale?
  • (a) W/m2
  • (b) dB
  • (c) Pa
  • (d) m/s
  1. What does a constant v+vo in the Doppler formula indicate?
  • (a) No Doppler shift
  • (b) Observer speed relative to the medium
  • (c) Source speed
  • (d) Wave speed
  1. Which type of wave produces a shock wave?
  • (a) Transverse
  • (b) Longitudinal
  • (c) Electromagnetic
  • (d) Standing
  1. What is the direction of particle motion in a sound wave?
  • (a) Perpendicular to propagation
  • (b) Parallel to propagation
  • (c) Circular
  • (d) Random
  1. What does a pseudo-force do in a non-inertial frame for the Doppler effect?
  • (a) Affects wave speed
  • (b) Affects observed frequency
  • (c) Creates interference
  • (d) Reduces intensity
  1. What is the dimension of particle velocity in a sound wave?
  • (a) [LT1]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. What is the role of shock waves in rocket launches?
  • (a) Increases speed
  • (b) Creates pressure jumps, affecting structural design
  • (c) Reduces frequency
  • (d) Increases intensity
  1. What happens to pressure across a shock wave?
  • (a) Decreases
  • (b) Increases sharply
  • (c) Remains the same
  • (d) Becomes zero
  1. Why does the Doppler effect occur in sound but not in light (non-relativistically)?
  • (a) Light speed is constant, sound speed depends on the medium
  • (b) Sound waves are transverse
  • (c) Light waves have higher frequency
  • (d) Sound waves have higher intensity
  1. What is the significance of 1012W/m2 in the decibel scale?
  • (a) Maximum intensity
  • (b) Threshold of hearing
  • (c) Threshold of pain
  • (d) Wave speed
  1. What is the unit of the Mach number?
  • (a) Dimensionless
  • (b) m/s
  • (c) Hz
  • (d) Pa
  1. What does a zero pressure amplitude in a sound wave indicate?
  • (a) Maximum intensity
  • (b) No sound wave
  • (c) Maximum particle velocity
  • (d) Doppler shift
  1. What is the physical significance of γRTM?
  • (a) Intensity of sound
  • (b) Speed of sound in a gas
  • (c) Doppler shift
  • (d) Mach number
  1. Why does a shock wave produce a sonic boom?
  • (a) Due to interference
  • (b) Due to sudden pressure change from supersonic speed
  • (c) Due to Doppler effect
  • (d) Due to standing waves
  1. What is the dimension of the adiabatic index γ?
  • (a) Dimensionless
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. How does the Doppler effect help in rocket tracking?
  • (a) Increases intensity
  • (b) Measures velocity via frequency shift
  • (c) Reduces wave speed
  • (d) Creates shock waves
  1. What is the role of temperature in sound wave speed?
  • (a) Increases speed via vT
  • (b) Decreases speed
  • (c) Affects amplitude
  • (d) Affects frequency
  1. What does a 20 dB increase in sound level indicate?
  • (a) Intensity increases by a factor of 100
  • (b) Intensity doubles
  • (c) Intensity increases by a factor of 10
  • (d) No change
  1. What is the physical significance of 2γM2γ+1?
  • (a) Intensity ratio
  • (b) Pressure ratio across a shock wave
  • (c) Doppler shift
  • (d) Wave speed
  1. What is the dimension of displacement amplitude in a sound wave?
  • (a) [L]
  • (b) [MLT1]
  • (c) [LT2]
  • (d) [ML2T1]
  1. Why does sound speed increase in solids compared to gases?
  • (a) Higher frequency
  • (b) Higher elasticity (Young’s modulus) and density
  • (c) Lower density only
  • (d) Higher temperature

NEET-style Numerical Problems

  1. A sound wave in air at 20°C (γ=1.4, R=8.31J/mol·K, M=0.029kg/mol) propagates. What is the speed?
  • (a) 342m/s
  • (b) 343m/s
  • (c) 344m/s
  • (d) 345m/s
  1. A source moves at 60m/s toward a stationary observer, emitting 300Hz (v=340m/s). What is the observed frequency?
  • (a) 352Hz
  • (b) 353Hz
  • (c) 354Hz
  • (d) 355Hz
  1. A sound wave has p0=0.2Pa in air (ρ=1.2kg/m3, v=340m/s). What is the intensity?
  • (a) 4.88×105W/m2
  • (b) 4.89×105W/m2
  • (c) 4.90×105W/m2
  • (d) 4.91×105W/m2
  1. A jet at M=1.2 (vs=340m/s) produces a shock wave. What is the speed and cone angle?
  • (a) v=408m/s, θ56.4
  • (b) v=408m/s, θ56.5
  • (c) v=410m/s, θ56.4
  • (d) v=410m/s, θ56.5
  1. A point source emits P=100W at r=4m. What is the intensity?
    - (a) 0.496W/m2
    - (b) 0.497W/m2
    - (c) 0.498W/m2
    - (d) 0.499W/m2

Back to Chapter

Return to Waves—II Chapter